

Question 3) A long plank of mass M is placed on two identical cylinders of radius r and mass m. The plank begins to be pulled from one end with M $\oint_{\vec{g}}$ a force \vec{F} parallel to the ground. If it is assumed that the cylinders roll on the ground without slipping, find the acceleration of the plank. (For a cylinder of mass m and radius r; $I = \frac{1}{2}mr^2$.) 777 **B**) $\frac{3F}{4M+3m}$ **D**) $\frac{F}{M+3m}$ A) $\frac{F}{4M-3m}$ C) $\frac{F}{4M+3m}$ **E**) $\frac{1}{4M+3m}$ **Question 4)** A circle that is at rest at t = 0 and has a moment of inertia I = 20 ($kg.m^2$) moves with an angular acceleration $\alpha = 4t$ (rad/s^2). Here t is in seconds. What is the power on the circle in Watts at t = 2 (s)? **B**) 2560 **C**) 1920 **D**) 1080 **E**) 640 A) 1280 A-2

Questions 5-6-7) A solid, uniform cylinder of mass $m_1 = M$ and radius 2Rrests on a horizontal table. It is attached to a frictionless shaft passing through m_1 the center of the cylinder, and the cylinder can rotate around this shaft. The m_2 rope passes over a pulley with mass $m_2 = \frac{M}{2}$, radius R, and attached to a 2Rfrictionless shaft passing through its center. A block of mass $m_3 = 2M$ is mm _____ hung on the free end of the rope, as shown in the figure. The rope does not ĝ slip on the pulley surface and the cylinder rolls on the table without slipping. For a cylinder and pulley of mass *m* and radius *r*; $I = \frac{1}{2}mr^2$. The system is m_3 released from rest, when the mass m_3 is displaced by h; 5) Find the speed of the center of mass of the cylinder. C) $\sqrt{\frac{4gh}{3}}$ 16gh 16*gh* 15 B) **D**) E) A) 6) What is the tension force in the rope between masses m_2 and m_3 ? **A**) $\frac{16 Mg}{11}$ C) $\frac{14Mg}{15}$ E) $\frac{16Mg}{9}$ 2Mg D) B) 3 15 7) What is the magnitude of the friction force? **B**) $\frac{10Mg}{2}$ 7 M g 8*Mg* 4Mg C) $\frac{16Mg}{3}$ D) E) A) -15 11 15 A-3

A-4