| YTU Physics Department 2024-2025 Fall Semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |                                                                         |                                         |                                 |                             |                                                                                                                  |                                                                                                             |                                                            |                                                            |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|---------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--|--|
| FIZ1001 PHYSICS-1 Midterm 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |                                                                         |                                         |                                 |                             |                                                                                                                  |                                                                                                             |                                                            |                                                            |  |  |
| Que                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | stion                                                             | Sheet AAAAAA                                                            |                                         |                                 |                             | 27/12/2024<br>18.30-20.10                                                                                        |                                                                                                             |                                                            | 100 min                                                    |  |  |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                                         |                                         |                                 |                             |                                                                                                                  | The 9th article of Student Disciplinary Regulations of VÖK Law No 2547 states "Cheating or helping to cheat |                                                            |                                                            |  |  |
| Surname                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                                         |                                         |                                 |                             |                                                                                                                  | or attempt to cheat in exams" de facto perpetrators                                                         |                                                            |                                                            |  |  |
| Student No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                         |                                         |                                 |                             | take <b>one or two semesters suspension</b> penalty.<br>Students are NOT permitted to bring <b>calculators</b> . |                                                                                                             |                                                            |                                                            |  |  |
| Group/Saloon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |                                                                         |                                         |                                 |                             | <b>mobile phones, smart watches</b> and/or any other                                                             |                                                                                                             |                                                            |                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00                                                                | 200                                                                     |                                         |                                 |                             |                                                                                                                  |                                                                                                             | unauthorized <b>electronic devices</b> into the exam room. |                                                            |  |  |
| 0<br>sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                 | <b>30</b> °                                                             | 3/5                                     | $\frac{45^{\circ}}{\sqrt{2}/2}$ | <b>33</b> °<br>4/5          |                                                                                                                  | $\sqrt{3}/2$                                                                                                | 90°                                                        | $a = 10 m/s^2$                                             |  |  |
| cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                 | $\sqrt{3}/2$                                                            | 4/5                                     | $\sqrt{2}/2$                    | 3/5                         |                                                                                                                  | 1/2                                                                                                         | 0                                                          | $\pi = 3$                                                  |  |  |
| $\vec{F}_{cons} = -\frac{dU}{dr}\hat{r}; W_{cons} = -\Delta U; U = mgy; U = \frac{1}{2}kx^{2}; \vec{F}_{net} = \frac{d\vec{p}}{dt}; \vec{p} = m\vec{v}; \vec{I} = \Delta \vec{p} = \vec{F}\Delta t; f_{s} \le \mu_{s}n;$ $f_{k} = \mu_{k}n; \vec{\omega} = \frac{\Delta \vec{\theta}}{\Delta t}; \vec{\alpha} = \frac{\Delta \vec{\omega}}{\Delta t}; \vec{\omega} = \frac{d\vec{\theta}}{dt}; \vec{\alpha} = \frac{d\vec{\omega}}{dt}; \vec{\omega} = \vec{\omega_{0}} + \vec{\alpha}t; \vec{\theta} = \vec{\theta_{0}} + \vec{\omega_{0}}t + \frac{1}{2}\vec{\alpha}t^{2}; F = -kx;$ $\omega^{2} = \omega_{0}^{2} + 2\alpha(\theta - \theta_{0}); v = r\omega; a_{t} = r\alpha; \vec{r}_{cm} = \frac{\sum m_{i}\vec{r}_{i}}{\sum m_{i}}; \vec{r}_{cm} = \frac{\int \vec{r}  dm}{\int dm}; \vec{\tau} = \vec{r} \times \vec{F}; \vec{\tau_{0}} = I_{0}\vec{\alpha}; I = \int r^{2}  dm;$ |                                                                   |                                                                         |                                         |                                 |                             |                                                                                                                  |                                                                                                             |                                                            |                                                            |  |  |
| $P = \vec{\tau} \cdot \vec{\omega}; W = \int \vec{\tau} \cdot d\vec{\theta}; \bar{P} = \frac{\Delta W}{\Delta t}; W = \Delta U + \Delta K; \ I_{disc} = \frac{1}{2}mr^2; \ I_{sphere} = \frac{2}{\tau}mr^2; \ I_{rod} = \frac{1}{\tau^2}mL^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                         |                                         |                                 |                             |                                                                                                                  |                                                                                                             |                                                            |                                                            |  |  |
| The potential energy of a particle, given in J, is expressed as: $U(x, y) = (1 - x^3)^2 + \frac{1}{2}y^2 + \frac{1}{2}x^2y^2$ .<br><b>1)</b> What are the components of the force acting on the particle, expressed in <i>N</i> ?<br>A) $F_x = -(6x + 9x^8 - xy^2); F_y = y(x^2 - 1)$<br>B) $F_x = -(6x + 6x^4 + xy^2); F_y = y(1 - x^2)$<br>C) $F_x = (6x^2 - 6x^5 - xy^2); F_y = -y(1 + x^2)$<br>D) $F_x = (3x^2 + 9x^8 - 2xy^2); F_y = y(1 - x^2)$<br>E) $F_x = -(3x^2 + xy^2); F_y = -y(1 + x^2)$                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                                                         |                                         |                                 |                             |                                                                                                                  |                                                                                                             |                                                            |                                                            |  |  |
| 2) At which position along the y-axis is the particle in equilibrium?<br>A) $y = -1$ B) $y = 0$ C) $y = \sqrt{1 - x^2}$ D) $y = 1$ E) $y = -\sqrt{1 - x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |                                                                         |                                         |                                 |                             |                                                                                                                  |                                                                                                             |                                                            |                                                            |  |  |
| <b>3)</b> If the force vector is $\vec{F}$ (2,3) which of the following correctly represents it in <i>N</i> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                         |                                         |                                 |                             |                                                                                                                  |                                                                                                             |                                                            |                                                            |  |  |
| A) –2298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 î + 9 ĵ                                                         | B) —126                                                                 | $\hat{\iota} - 9\hat{j}$                | C) -30                          | î — 15 j                    | \$                                                                                                               | D) —186                                                                                                     | $\delta \hat{i} - 15 \hat{j}$                              | E) -2280 î - 9 ĵ                                           |  |  |
| <b>4)</b> In a co<br>by who c<br>quantity o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mpetition<br>an lift fiv<br>can be us                             | n where part<br>e cement ba<br>ed to decide t                           | icipants of<br>gs, each w<br>the winner | equal mass<br>eighing 40<br>?   | s demor<br><i>kg</i> , to a | nstra<br>hei                                                                                                     | ate their pe<br>ight of 1 m                                                                                 | erformance<br>in the sho                                   | e, the winner is determined<br>ortest time. Which physical |  |  |
| A) The to<br>B) The ph<br>C) The gra<br>D) The pc<br>E) The rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tal energy<br>aysical wo<br>avitationa<br>ower they<br>tio of the | v transferred<br>ork done<br>al potential e<br>generate<br>work done to | to the bags<br>nergy<br>o the energ     | s<br>y consume                  | d                           |                                                                                                                  |                                                                                                             |                                                            |                                                            |  |  |



| <b>10)</b> What is the kinetic energy of the glass marble at point B?                                                            |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| A) $5/8 (maR)$                                                                                                                   |  |  |  |  |  |  |  |  |
| B) $5/4 (mgR)$                                                                                                                   |  |  |  |  |  |  |  |  |
| C) $3(mgR)$                                                                                                                      |  |  |  |  |  |  |  |  |
| D) $7/3 (mgR)$                                                                                                                   |  |  |  |  |  |  |  |  |
| E) 15 (mgR)                                                                                                                      |  |  |  |  |  |  |  |  |
| Questions 11-14<br>A solid rod with a length of 1 $m$ has a non-uniform linear mass density given                                |  |  |  |  |  |  |  |  |
| by $\lambda = \frac{1}{2} - \frac{x}{2}$ where $\lambda$ and $r$ are expressed in $\frac{kg}{k}$ and $m$ respectively            |  |  |  |  |  |  |  |  |
| Initially the rod is stationary and at $t = 0$ it begins to rotate with a constant                                               |  |  |  |  |  |  |  |  |
| angular acceleration of $\alpha = 4 rad/s^2$ .                                                                                   |  |  |  |  |  |  |  |  |
| 11) What is the moment of inertia of the rod about an axis passing through $0$                                                   |  |  |  |  |  |  |  |  |
| its denser end and perpendicular to its length in $kg m^2$ ?                                                                     |  |  |  |  |  |  |  |  |
| A) 5/16 B) 5/24 C) 11/48 D) 5/48 E) 5/36                                                                                         |  |  |  |  |  |  |  |  |
|                                                                                                                                  |  |  |  |  |  |  |  |  |
|                                                                                                                                  |  |  |  |  |  |  |  |  |
| <b>12)</b> What is the rotational kinetic energy of the rod about the same axis at $t = 2 s$ , in joules?                        |  |  |  |  |  |  |  |  |
| A) 22/3                                                                                                                          |  |  |  |  |  |  |  |  |
| B) 10/3                                                                                                                          |  |  |  |  |  |  |  |  |
| C) 20                                                                                                                            |  |  |  |  |  |  |  |  |
| D) 40                                                                                                                            |  |  |  |  |  |  |  |  |
| E) 5/3                                                                                                                           |  |  |  |  |  |  |  |  |
| <b>13)</b> What is the magnitude of the net torque acting on the rod about the same axis at $t = 2 s$ , in <i>Nm</i> ?           |  |  |  |  |  |  |  |  |
| A) 5/4 B) 5/6 C) 5/12 D) 11/12 E) 5/9                                                                                            |  |  |  |  |  |  |  |  |
|                                                                                                                                  |  |  |  |  |  |  |  |  |
|                                                                                                                                  |  |  |  |  |  |  |  |  |
| 14) What is the distance between the center of mass of the rod and its denser end at the initial moment, in meters?              |  |  |  |  |  |  |  |  |
| A) 8/9 B) 8/15 C) 4/9 D) 4/15 E) 4/5                                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                  |  |  |  |  |  |  |  |  |
| 15) LABORATORY QUESTION                                                                                                          |  |  |  |  |  |  |  |  |
| A setup to determine the moment of inertia using energy conservation includes a                                                  |  |  |  |  |  |  |  |  |
| pulley with a radius $r = 2 \text{ cm}$ attached under a reference table. A string is wound                                      |  |  |  |  |  |  |  |  |
| over an massless and frictionless nulley and hangs vertically with mass m. When the                                              |  |  |  |  |  |  |  |  |
| system is released, the time it takes for <i>m</i> to fall a vertical distance $h = 100 \text{ cm}$ is                           |  |  |  |  |  |  |  |  |
| measured, and the reference table's moment of inertia is determined to be 760 g cm <sup>2</sup> .                                |  |  |  |  |  |  |  |  |
| When a homogeneous equilateral triangular plate is placed on the reference table                                                 |  |  |  |  |  |  |  |  |
| with its center of mass aligned with the rotation axis, it is found that <i>m</i> takes 5 <i>s</i> to $(gt^2)$                   |  |  |  |  |  |  |  |  |
| travel the same distance. What is the moment of inertia of the equilateral triangular $I_0 = mr^2 \left(\frac{3}{2h} - 1\right)$ |  |  |  |  |  |  |  |  |
| $\int h$                                                                                                                         |  |  |  |  |  |  |  |  |
| A) 1200                                                                                                                          |  |  |  |  |  |  |  |  |
| B) 2200                                                                                                                          |  |  |  |  |  |  |  |  |
| D) 4200                                                                                                                          |  |  |  |  |  |  |  |  |
| E) 5200                                                                                                                          |  |  |  |  |  |  |  |  |
|                                                                                                                                  |  |  |  |  |  |  |  |  |
|                                                                                                                                  |  |  |  |  |  |  |  |  |

| Questions 16-17Two objects with masses M and 3M are attached to the ends of a massless string passing over<br>a pulley with a mass of 2M, fixed to the ceiling. The string does not slip on the pulley, and the<br>pulley can rotate frictionlessly around its axis.16) What is the acceleration of the blocks?                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A) g/5 B) 2g/3 C) 3g/5 D) g/10 E) 2g/5                                                                                                                                                                                                                                                                                                                                                                                |
| <b>17)</b> What is the $T_1/T_2$ ratio?                                                                                                                                                                                                                                                                                                                                                                               |
| A) 10/9 B) 7/10 C) 7/9 D) 9/7 E) 1                                                                                                                                                                                                                                                                                                                                                                                    |
| Questions 18-19         A solid disk with a mass M and radius 2R has two solid spheres attached at its edges, each with a radius R. The spheres, made from different materials, have uniform mass densities, with masses M and M/2, respectively.         18) What are the coordinates of the center of mass in terms of R?         A) (-1/5,0)       B) (0,7/5)       C) (-2/5,0)       D) (-3/5,0)       E) (0,2/5) |
| <b>19)</b> What is the moment of inertia of the system about an axis passing through its center of mass, expressed in $MR^2$ ?                                                                                                                                                                                                                                                                                        |
| A) 41/5 B) 4/5 C) 43/5 D) 51/25 E) 11/5                                                                                                                                                                                                                                                                                                                                                                               |
| <b>20)</b> On a frictionless inclined plane, an object <i>m</i> with a mass of 235 <i>g</i> , initially moves with a velocity of $v_i = 5 m/s$ . As it travels a displacement <i>x</i> , its speed decreases by 2 <i>m/s</i> . What is the displacement of the object in <i>m</i> ?<br>A) 6/5<br>B) 5/2<br>C) 21/10<br>D) 47/3<br>E) 8/5                                                                              |