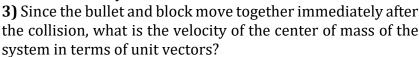
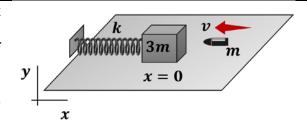
YTU Physics Department 2024-2025 Fall Semester

FIZ1001 PHYSICS-1 Make up Final exam

FIZIOUI FIITSICS-1 Make up Final exam								
Question Sheet		AAAAAA	29/01/2025 15.00-17.00	100 m				
Name				nt Disciplinary Regulations of				
Surname			YÖK Law No.2547 states "Cheating or helping to cheat or attempt to cheat in exams" de facto					
Student No				two semesters suspension				
Group/Saloon			penalty. Students are NOT permitted to brir calculators, mobile phones, smart watches and/o					
Signature			any other unauthorized exam room.	electronic devices into the				


θ	00	300	370	450	530	60°	900	
sin	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1	$g = 10 m/s^2$
cos	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0	$\pi = 3$


- 1) Which of the following/followings can be considered as one of the conservative force types?

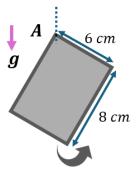
 I. Friction force II. Fluid resistance III. Gravitational force IV. Spring force
- A) II, III, IV B) III, IV C) III D) I, II, III E) IV
- **2)** Given that "K" is kinetic energy and "p" is linear momentum, which of the following correctly expresses the relationship between linear momentum, mass, and kinetic energy?

A)
$$p = 2Km$$
 B) $p = \sqrt{2Km}$ C) $p = \sqrt{2Km}$ D) $p = 2K/m$ E) $p = \sqrt{2K}/m$

Questions 3-6 A massless spring with a spring constant of k is placed on a frictionless horizontal plane, with one end attached to a wall and the other end connected to a block of mass 3m. A bullet of mass m is fired with velocity v and strikes the block, initially at rest at x=0.

A)
$$-\frac{2v}{3} \hat{i}$$
 B) $-\frac{v}{2} \hat{i}$ C) $\frac{v}{5} \hat{i}$ D) $-\frac{v}{4} \hat{i}$ E) $\frac{3v}{4} \hat{i}$

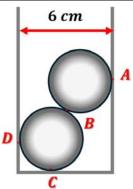
- 4) What is the amplitude of the resulting simple harmonic motion?
- A) $\left(\frac{v}{4}\right)\sqrt{\frac{3m}{k}}$ B) $\left(\frac{v}{2}\right)\sqrt{\frac{m}{k}}$ C) $v\sqrt{\frac{m}{k}}$ D) $2v\sqrt{\frac{m}{3k}}$ E) $v\sqrt{\frac{3m}{5k}}$


- **5)** How long does it take for the block to return to its initial position at x=0 for the first time?

- A) $\sqrt{\frac{\pi m}{k}}$ B) $2\pi \sqrt{\frac{m}{k}}$ C) $\pi \sqrt{\frac{m}{k}}$ D) $2\sqrt{\frac{\pi m}{k}}$ E) $\pi \sqrt{\frac{m}{4k}}$
- **6)** What is the maximum acceleration of the block?

- A) $\frac{v}{8}\sqrt{\frac{k}{m}}$ B) $2v\sqrt{\frac{k}{m}}$ C) $8v\sqrt{\frac{k}{m}}$ D) $v\sqrt{\frac{k}{8m}}$ E) $v\sqrt{\frac{k}{4m}}$

Questions 7-8 A uniform plate with dimensions 6 $cm \times 8$ cm weighs 15 N.


- 7) When the plate is lifted and held at corner A, it begins to oscillate with a small amplitude. What is the moment of inertia of the plate about point A in the SI unit system?
- A) 0.01 B) 100 C) 0.05 D) 0.005 E) 10

- 8) What is the angular frequency of the rectangular plate for small oscillations in the SI unit system?
- A) $5\sqrt{6}/2$ B) $5\sqrt{6}/3$ C) $10\sqrt{6}$ D) $5\sqrt{6}$ E) $5\sqrt{6}/6$

Questions 9-11 Two identical marbles with a mass of m and a diameter of 4 cm, are in equilibrium inside a cylindrical container with a radius of 3 cm as shown in the figure. Point B is the contact point between the two marbles.

9) What is the reaction force exerted by the side wall (A) on the upper marble in terms of mg?

- A) $\sqrt{3}/3$
- B) $3\sqrt{3}$
- C) $2\sqrt{3}$
- D) $1/\sqrt{2}$
- E) $2\sqrt{2}$
- **10)** What is the reaction force between the marbles at the contact point (B) in terms of *mg*?
- A) $\sqrt{2/3}$
- B) $\sqrt{3}$
- C) $2\sqrt{3}/3$
- D) $3\sqrt{1/2}$
- E) $2\sqrt{2}$
- **11)** What is the reaction force exerted by the container's bottom (C) on the lower marble in terms of *mg*?

A) $3/\sqrt{2}$

B) 1

C) 2

D) $\sqrt{3/2}$

E) $1/\sqrt{2}$

Questions 12-14

A stone with a weight of 10N has a position vector given by $\vec{r}(t) = (3t^2 + 25t + 7)\hat{i} - 4t^3\hat{j}$ here r is in meters and t is in seconds.

12) What is the velocity vector of the stone 2 seconds after it starts its motion?

A) $37 \hat{i} - 48 \hat{j}$

B) $37 \hat{i} + 48 \hat{j}$

C) $33 \hat{i} - 36 \hat{j}$

D) $37 \hat{i} - 36 \hat{j}$

E) $31 \hat{i} + 48 \hat{j}$

13) What is the angular momentum of the stone about its initial position 2 seconds after it starts its motion, in the SI unit system?

A) $-1792 \hat{k}$

B)-3186 \hat{k}

C) 4160 \hat{k}

D) $-4160 \hat{k}$

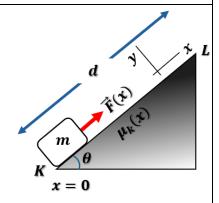
E) 2976 \hat{k}

14) What is the average torque acting on the stone in the first two seconds, relative to the point where the motion initially started, in the SI unit system?

A) $-448 \hat{k}$

B)-896 \hat{k}

C) 1344 \hat{k}


D) $-1344 \hat{k}$

E) 448 \hat{k}

Questions 15-17 A mass m moves at a constant speed along the path KL on a rough inclined plane, being pulled by a force F acting parallel to the inclined plane. The coefficient of kinetic friction between the mass and the inclined plane is given as $\mu_k(x) = 0.3x^2 + 0.02$ olarak verilmiştir.

15) What is the work done by the net force acting on the mass m?

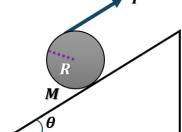
A) $3\frac{mgd}{5}$ B) $\frac{mgdsin\theta}{50}$ C) 0 D) $\frac{3mgdsin\theta}{10}$ E) $\frac{mgdsin\theta}{5}$

16) What is the force F(x) acting on the mass m?

A) $mg(sin\theta + (0.3x^2 + 0.02)cos\theta)$

B) $mg(0.3x^2 + 0.02)$

C) $mgsin\theta(0.3x^2 + 0.02)$

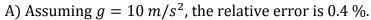

- D) $mgcos\theta(0.3x^2 + 0.02)$
- E) $mgcos\theta$

17) What is the work done by the force F(x) as the mass m travels the distance d from point K to point L?

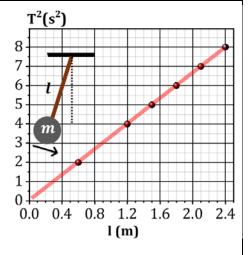
- A) $mgd(sin\theta + (0.3d^3 + 0.02)cos\theta)$
- B) $mgd(sin\theta + (0.3d^2 + 0.02))$
- C) $mgd(0.3d^2 + 0.02)cos\theta$
- D) $mgd(sin\theta + (0.3d^2 + 0.02)cos\theta)$
- E) $mgd(sin\theta + (0.1d^2 + 0.02)cos\theta)$

Questions 18-19 A 500 g coil with a radius of 20 cm rolls without slipping along a rough inclined plane at an angle of $\theta = 37^{\circ}$ to the horizontal, pulled by a wire wrapped around the coil.

18) What is the tension force on the wire if the coil is in equilibrium?


- A) 3/2
- B) 3
- C) 1/2 D) 2/5
- E) 2

19) What is the acceleration of the coil in terms of the tension force on the wire if the coil gains a constant acceleration?


- A) $\frac{T}{8M}$ + 2 B) $\frac{3T}{2M}$ C) $\frac{4T}{3M}$ 4 D) $\frac{6T}{5M}$ E) $\frac{9T}{4M}$ + 1

20) LABORATORY QUESTION

In a simple pendulum experiment, the periods for small oscillations of a pendulum with a mass of 5 kg are measured for varying pendulum string lengths, and $T^2 = f(l)$ is observed. Which of the following statements is correct?

- B) If the same experiment is performed on Mars, the period values will remain unchanged.
- C) Increasing the pendulum's mass m will increase the frequency of oscillations.
- D) The length of the pendulum string is directly proportional to the frequency of oscillations.
- E) Assuming $g = 9.8 \, m/s^2$ the absolute error is $100 \, cm/s^2$.

