YTU Physics Department 2024-2025 Spring Semester									
FIZ1002 Physics-2 Mid Term-1									
Question Sheet			АААААА			07.04.2025 14.00-15.40		100 m	
Name		i			The 9th article of Student Disciplinary Regulations of				
Surname						YOK Law No.2547 states " Cheating or helping to cheat or attempt to cheat in exams" de facto perpetrators			
Student No						take one or two semesters suspension penalty. Students are NOT permitted to bring calculators ,			
Group/Saloon						mobile phones, smart watches and/or any other unauthorized electronic devices into the evam room			
Signatur	e	unauthorized electronic devices in							
θ	00	300	370	450	530	60 ⁰	90 ⁰	$k = 1/(4\pi\varepsilon_0) \cong 9 \ 10^9 \frac{Nm^2}{C^2}$	
sin	0	1/2	3/5	$\sqrt{2}/2$	4/5	√3/2	1	$\varepsilon_0 \cong 9 \ 10^{-12} F/m$ $q = q_e = q_n = 1.6 \ 10^{-19} C$	
cos	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0	$g = 10\frac{m}{s^2}, \pi = 3$	
$\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r}; \ \vec{E} = k \frac{q}{r^2} \hat{r}; \ \vec{E} = k \int \frac{dq}{r^2} \hat{r}; \ V = k \frac{q}{r}; \ V = k \int \frac{dq}{r}; \ V(\infty) = 0; \ \Delta U = q \Delta V; \ dV = 4\pi r^2 dr; \ dV = 2\pi l r dr;$									
$\lambda = \frac{Q}{L} = \frac{dq}{dl}; \ \sigma = \frac{Q}{A} = \frac{dq}{dA}; \ \rho = \frac{Q}{V} = \frac{dq}{dV}; \ \phi_E = \int \vec{E} \cdot d\vec{A}; \ V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{l}; \ \oint \vec{E} \cdot d\vec{A} = \frac{Q_{in}}{\varepsilon_0}; \ \Delta V = Ed; \ E_i = \frac{\sigma}{2\varepsilon_0};$									
$E_{c} = \frac{\sigma}{\varepsilon_{0}}; \ p = aq; \ \vec{\tau} = \vec{p} \times \vec{E}; \ U = -\vec{p}.\vec{E}; \ \vec{E} = -\frac{\partial V(x,y,z)}{\partial x}\hat{\iota} - \frac{\partial V(x,y,z)}{\partial y}\hat{J} - \frac{\partial V(x,y,z)}{\partial z}\hat{k}; \ C = \frac{ Q }{ \Delta V }; \ C = \frac{\varepsilon_{0}A}{d}; \ U = \frac{1}{2}CV^{2};$									
$\frac{1}{C_{eq}} = \sum_{i} \frac{1}{C_{i}}; C_{eq} = \sum_{i} C_{i}; C = \kappa C_{0}; V = \frac{V_{0}}{\kappa}; E = \frac{E_{0}}{\kappa}; U = \frac{U_{0}}{\kappa}; W = \int \vec{F} \cdot d\vec{r}; W = -\Delta U; U = \frac{1}{2} \sum_{i \neq j} k \frac{q_{i}q_{j}}{r_{ii}}; I = \frac{dq}{dt};$									
$I = nqv_d A; R = \rho \frac{\ell}{4}; \vec{J} = \sigma \vec{E}; R = \frac{\Delta V}{I}; \sigma = \frac{1}{2}; J = \frac{I}{4}; P = I^2 R; \vec{a} = \frac{d\vec{v}}{dt}; \vec{v} = \vec{v_0} + \vec{a}t; \vec{r} = \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{a}t^2$									
1) What is the net electric potential at the center of a cube with side length <i>a</i> , where seven corners have a charge of $+Q$ and one corner has a charge of $-Q$, expressed in terms of kQ/a ? A) $8/\sqrt{3}$ B) $\sqrt{3}/2$ C) $4/\sqrt{2}$ D) $4/\sqrt{3}$ E) $12/\sqrt{3}$									
2) What is the electric field vector required to keep a mass <i>m</i> with charge +Q stationary on a frictionless, insulated inclined plane? A) $-\left(\frac{mgb}{Q\sqrt{a^2+b^2}}\right)\hat{i}$ B) $\left(\frac{mgb}{Qa}\right)(-\hat{i}+\hat{j})$ C) $\left(\frac{mgb}{Q\sqrt{a^2+b^2}}\right)(\hat{i}+\hat{j})$ D) $\left(\frac{mgb}{Qa}\right)\hat{i}$ E) $-\left(\frac{mgab}{Q\sqrt{a+b}}\right)\hat{i}$									
3) A graph with an ell of the elect A) 5 <i>î</i> , 0, –	h showing ectric field ctric field 5î B) – 5	the relation d is given in vectors in re (i, 0, 5i) C) 2	ship betwe the figure. gions I, II, a c, 0, –2î D	een potentia Which of th and III corre) 0, 5î, 0 E	al and p ne follov ectly giv) —î, 5î	osition for a ving options ven in V/cm ² , $\hat{\iota}$	certain i is the ra	$\begin{array}{c c} & \theta \\ \hline a \\ \hline region \\ anking \\ 5 \\ 4 \\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \hline x(cm) \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \hline \end{array}$	

Sorular 9-10) The volume charge density of an infinitely long insulating cylinder with radius *R* is
given by
$$\rho = 3\rho_0 r$$
, ρ_0 is a positive constant, and *r* is the radial distance from the center of the
cylinder.
9) What is the electric field intensity inside the cylinder for $r < R$?
A) $\frac{\rho \sigma^2}{6\epsilon_0}$ **B**) $\frac{\rho \sigma^2}{6\epsilon_0}$ **C**) $\frac{3\rho \sigma^2}{4\epsilon_0}$ **D**) $\frac{\rho \sigma^2}{\epsilon_0}$ **E**) $\frac{3\rho \sigma^2}{2\epsilon_0}$
10) What is the electric field intensity outside the cylinder for $r > R$?
A) $\frac{\rho \sigma^2}{6\epsilon_0}$ **B**) $\frac{\rho \sigma^2}{6\epsilon_0 r}$ **C**) $\frac{3\rho \sigma^2}{4\epsilon_0}$ **D**) $\frac{\rho \sigma^2}{\epsilon_0 r}$ **E**) $\frac{3\rho \sigma^2}{2\epsilon_0 r}$
Sorular 11-14) A homogeneous insulating sphere of charge $-2Q$ and radius *R* is
positioned at the center of an electrostatically balanced conducting sphere of radius
Sorular 11-14) A homogeneous insulating sphere of charge $-2Q$ and radius *R* is
positioned at the center of an electrostatically balanced conducting sphere of radius
Sorular 11-14) A homogeneous insulating sphere has a total charge of SQ.
11) What are the electric field vectors at $r = 2R$ and $r = 4R$?
A) $\frac{\rho \sigma^2}{2\epsilon_0 r}$ **D**: $\frac{2\pi}{2\epsilon_0 r}$ **E**: $\frac{2\pi}{2\epsilon_0 r}$, $\frac{2\pi}{2\epsilon_0 r}$, $r = 2R = \frac{2\pi}{R^2} r$; $E_{sR} = \frac{5\pi}{2\epsilon_0 r} r$
12) What is the charge density on the outer surface of the conducting sphere?
A) $\frac{5q}{3\epsilon_0 r^2}$ **B**) $\frac{3q}{12\pi\epsilon_0 r}$ **C**) $\frac{3q}{12\pi\epsilon_0 r}$ **D**) $\frac{5q}{2\epsilon_0}$ **E**: $\frac{3\pi}{2\epsilon_0 r}$
13) What is the electric potential at a point on the outer surface of the conducting sphere?
A) $\frac{5q}{\epsilon_0}$ **E**) $\frac{5q}{\epsilon_0}$ **C**) $\frac{5q}{2\epsilon_0}$ **D**) $\frac{5q}{2\epsilon_0}$ **E**: $\frac{3q}{4\pi\epsilon_0 R}$
14) What is the electric potential at a point on the outer surface of the conducting sphere?
A) $\frac{3q}{4\pi\epsilon_0 R}$ **B**) $\frac{3q}{4\pi\epsilon_0 R}$ **C**) $\frac{5q}{12\pi\epsilon_0 R}$ **D**) $\frac{7q}{12\pi\epsilon_0 R}$ **B**) $\frac{q}{4\pi\epsilon_0 R}$

Sorular 15-16) A parallel plate capacitor is constructed using square-shaped conductive plates with side length $L = 4 \ cm$ and separation $d = 1.6 \ cm$. A potential difference of 2 <i>V</i> is applied between the plates. 15) If a conductive layer with thickness $d/2$, width $L/2$, and length <i>L</i> is inserted between the capacitor plates as shown in the figure, what is the new capacitance of the capacitor?									
A) $135 \ 10^{-12} F$ B) $2.7010^{-12} F$ C) $270 \ 10^{-12} F$ D) $1.35 \ 10^{-12} F$ E) $141 \ 10^{-12} F$									
16) How much energy does the capacitor store in joules?									
A) $1.35 \ 10^{-12}$ B) $2.7 \ 10^{-10}$ C) $5.4 \ 10^{-12}$ D) $2.7 \ 10^{-12}$ E) $2.82 \ 10^{-10}$									
Sorular 17-19) A copper conductor with a length of $0.6 m$ and a diameter of $0.2 mm$ is placed along the x-axis between $x = 0$ and $x = 0.6 m$ with a potential difference of 2.4 V ($\rho_{Cu} = 2 \ 10^{-8} \Omega m$). 17) What is the resistance of the wire in Ω ? A) 6 B) 0.3 C) 3 D) 4 E) 0.4									
18) What is the current flowing through the wire in <i>A</i> ?									
A) 0.8 B) 8 C) 6 D) 0.6 E) 0.4									
19) What is the current density in A/m^2 ?									
A) 0.2 10 ⁸ B) 3 10 ⁸ C) 2 10 ⁸ D) 0.3 10 ⁶ E) 1.5 10 ⁶									
<i>F</i> (<i>mN</i>)	20) Experiment question								
$\begin{bmatrix} 16 \\ 14 \\ 12 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	A physicist attempting to determine Coulomb's constant sets up the experimental setup shown in the figure using identical spheres and insulating strings of different lengths. Each sphere is charged with + 100 <i>nC</i> , and after reaching equilibrium, the angles θ between the strings and the vertical axis are measured to calculate the electrostatic force between the spheres. Given the distance r between the centers of the spheres, the physicist obtains the graph $F = f\left(\frac{1}{r^2}\right)$. What value of Coulomb's constant does the physicist find in Nm^2/C^2 ? A) 8 10 ⁹ B) 9 10 ⁹ C) 6 10 ⁹ D) 8 10 ⁶ E) 9 10 ⁶								