


YTU Physics Department 2024-2025 Spring Semester											
FIZ1002 Physics-2 Mid Term-2											
Question Sho			Sheet AAAAAA					07.05.2025 18.30-20.10		100 m	
Nar Sur	ne name								The 9th article of Student Disciplinary Regulations of YÖK Law No.2547 states " Cheating or helping to cheat or attempt to cheat in exams " de facto perpetrators take one or two semesters suspension penalty.		
	dent l										
Group/Saloon									Students are NOT permitted to bring calculators, mobile phones, smart watches and/or any other		
Signature											levices into the exam room.
θ	00	300	370	450	530	600	900		$q = 1.6 \ 10^{-19}$ C;	k = 1/	$V(4\pi\varepsilon_0) \cong 9\ 10^9 \frac{Nm^2}{C^2};$
sin cos	0	$1/2$ $\sqrt{3}/2$	3/5 4/5	$\sqrt{2}/2$ $\sqrt{2}/2$	4/5 3/5	$\sqrt{3}/2$ 1/2	1 0				3; $ln\left(\frac{1}{2}\right) = -0.69$, 12 $10^{-7}Tm/A$
$\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r}; \vec{E} = k \frac{q}{r^2} \hat{r}; \Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{q_{i\varsigma}}{\epsilon_0}; V = k \frac{q}{r}; V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{l}; \tau = RC; V = IR; I = \frac{dq}{dt}; I(t) = I_0 (1 - e^{-t/\tau});$											
$q(t) = Q_0 e^{-t/\tau}; I(t) = I_0 e^{-t/\tau}; q(t) = Q_0 \left(1 - e^{-t/\tau}\right); P = IV = I^2 R; R = \rho \frac{l}{A}; J = \frac{1}{A}; \sigma = \frac{1}{\rho}; \vec{J} = \sigma \vec{E}; I = nqAv_d;$											
$\vec{F}_B = q\vec{\nu} \times \vec{B}; \ \vec{F}_r = m\vec{a}_r; \ a_r = \frac{v^2}{r}; \ \vec{F}_B = I\vec{l} \times \vec{B}; \ \vec{F} = q\vec{E} + q\vec{\nu} \times \vec{B}; \ \vec{\tau} = \vec{\mu} \times \vec{B}; \ U = -\vec{\mu}. \ \vec{B}; \ d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \hat{r}}{r^2};$											
$\Phi_B = \int \vec{B} \cdot d\vec{A}; B = \mu_0 \frac{N}{l} I = \mu_0 nI; \ \oint \vec{B} \cdot d\vec{l} = \mu_0 (I + I_d); \ I_d = \varepsilon_0 \frac{d\phi_E}{dt}; \vec{\mu} = I\vec{A}; \ \varepsilon = \oint \vec{E} \cdot d\vec{l} = -\frac{d\phi_B}{dt}$											
Questions 1-3) Four capacitors and four resistors, with $C = 10 \ \mu F$ and $R = 1 \ M\Omega$, form the RC circuit shown. Initially, the total charge on the capacitors is 600 μC . The switch S is closed at t = 0, and the capacitors begin to discharge. 1. What is the time constant of the circuit in seconds? A) 90 B) 150 C) 30 D) 10 E) 100 2. How long does it take for the total charge on the capacitors to decrease by half? A) 103.5 B) 62.1 C) 69 D) 45 E) 20.7 3. What is the current in the circuit in microamperes when the charge has dropped to half of its initial value?											
A) 13/5 B) 30 C) 10/3 D) 20 E) 10											
4. An electron moves to the left across the page with a constant velocity \vec{v} , passing through a uniform magnetic field \vec{B} directed into the page. What should be the direction of an applied electric field to ensure the electron continues moving in a straight line? A) \hat{j} B) $-\hat{i}$ C) \hat{k} D) \hat{i} E) $-\hat{j}$											

