
$V = \frac{V_{0}}{\kappa}; E = \frac{E_{0}}{\kappa}; U = \frac{U_{0}}{\kappa}; W = \int \vec{F} \cdot d\vec{r}; W = -\Delta U; I = \frac{dq}{dt}; I = nqv_{d}A; R = \rho\frac{\ell}{A}; \vec{J} = \sigma\vec{E}; R = \frac{dV}{l}; \sigma = \frac{1}{\rho}; J = \frac{1}{A}; \tau = RC; V = IR; I$ $I(t) = I_{0} \left(1 - e^{-t/\tau}\right); q(t) = Q_{0} e^{-t/\tau}; I(t) = I_{0} e^{-t/\tau}; q(t) = Q_{0} \left(1 - e^{-t/\tau}\right); P = IV = I^{2}R; \vec{F}_{B} = q\vec{v} \times \vec{B}; \vec{F}_{B} = I\vec{l} \times \vec{B}; \vec{\tau} = \vec{\mu} \times \vec{B}$ $\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}; U = -\vec{\mu}.\vec{B}; d\vec{B} = \frac{\mu_{0}I}{4\pi} \frac{d\vec{s} \times \hat{\tau}}{r^{2}}; \Phi_{B} = \int \vec{B} \cdot d\vec{A}; B = \mu_{0} \frac{N}{l}I = \mu_{0}nI; \phi\vec{B} \cdot d\vec{l} = \mu_{0}(I + I_{d}); I_{d} = \varepsilon_{0} \frac{d\phi_{E}}{dt}; \vec{\mu} = I\vec{A}; B = \mu$ $\varepsilon = \phi\vec{E} \cdot d\vec{l} = -\frac{d\phi_{B}}{dt}; \varepsilon_{L} = -N \frac{d\phi_{B}}{dt} = -L \frac{dI}{dt}; I_{rms} = \frac{I_{max}}{\sqrt{2}}; \Delta V_{rms} = \frac{\Delta V_{max}}{\sqrt{2}}; X_{L} = Lw; X_{C} = \frac{1}{cw}; tg\phi = \left(\frac{X_{L} - X_{C}}{R}\right); I_{max} = \frac{\Delta V_{max}}{Z}$ $w = \frac{1}{\sqrt{LC}}; Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}}; I_{rms}\Delta V_{rms}cos(\phi); \Delta v_{R} = \Delta V_{R}sin(wt); \Delta v_{C} = \Delta V_{C}sin\left(wt - \frac{\pi}{2}\right); \Delta v_{L} = \Delta V_{L}sin\left(wt + \frac{\pi}{2}\right)$ $\Delta V_{L} = I_{max}X_{L}; \Delta V_{C} = I_{max}X_{C}; \Delta V_{R} = I_{max}R; \omega_{0} = \frac{1}{\sqrt{LC}}; \tau = \frac{L}{R}; I = \frac{\varepsilon}{R} \left(1 - e^{-\frac{R}{L}t}\right); I = \frac{\varepsilon}{R} e^{-\frac{t}{\tau}}; U_{L} = \frac{1}{2}LI^{2}; u_{B} = \frac{1}{2}\left(\frac{B^{2}}{\mu_{0}}\right); M_{12} = N_{2}\frac{\phi_{12}}{I_{1}}$	YTU Physics Department 2024-2025 Spring Semester					
Question SneetAAAAAA09.00-11.40100 mNameThe 9th article of Student Disciplinary RegulationSurnameThe 9th article of Student Disciplinary RegulationStudent NoStudent NoSignatureStudent NoSignatureStudent NoSignatureStudent NoSignatureStudent S are NOT permitted to bring calcula mobile phones, smart watches and/or any ou unauthorized electronic devices into the exam root θ θ^0 30^0 37^0 45^0 53^0 60^0 90^0 $signaturek = \frac{1}{4\pi\epsilon_0} \cong 910^0 \frac{8m^2}{C^2}; \epsilon_0 \cong 9 \frac{10^{-12}x}{m}; e^{0.69} = 2; \mu_0 = 12 \frac{10^{-7}}{A}b0^1/23/5\sqrt{2}/24/5\sqrt{3}/24/5\sqrt{3}/21cos1\sqrt{3}/24/5\sqrt{3}/21\sqrt{3}/24/5\sqrt{3}/21cos1\sqrt{3}/24/5\sqrt{3}/21\sqrt{3}/24/5\sqrt{3}/21cos1\sqrt{3}/24/5\sqrt{3}/21\sqrt{3}/24/5\sqrt{3}/21cos1\sqrt{3}/24/5\sqrt{3}/21100^00^01100^00^01100^00^0110^00^00^0110^00^00^01^01^00^00^0$	FIZ1002 Physics-2 Final Exam					
SurnameYÖK Law No.2547 states "Cheating or helping to c or attempt to cheat in exams" de facto perpetriv take one or two semesters suspension per Students are NOT permitted to bring calcula mobile phones, smart watches and/or any c unauthorized electronic devices into the exam row unauthorized electronic devices into the exam row or attempt to cheat in exams" de facto perpetriv take one or two semesters suspension per students are NOT permitted to bring calcula mobile phones, smart watches and/or any c unauthorized electronic devices into the exam row unauthorized electronic devices into the exam row unauthorized electronic devices into the exam row and the result of the exam row of the exam row and the electronic devices into the exam row and the electronic device in the solenoid at any time t?A) 6)	Question S		AAAAAA	100 m		
or attempt to cheat in exams" de facto perpetri take one or two semesters suspension per take one or two semesters susp	Name					
Student Notake one or two semesters suspension per Students are NOT permitted to bring calcula mobile phones, smart watches and/or any or unauthorized electronic devices into the exam root $\vec{0}$ $\vec{00}$ $\vec{300}$ $\vec{370}$ $\vec{450}$ $\vec{530}$ $\vec{600}$ $\vec{900}$ unauthorized electronic devices into the exam root unauthorized electronic devices into the exam root $\vec{0}$ $\vec{00}$ $1/2$ $3/5$ $\sqrt{2/2}$ $4/5$ $\sqrt{3}/2$ $1/2$ 0 \vec{sin} 0 $1/2$ $3/5$ $\sqrt{2/2}$ $4/5$ $\sqrt{3}/2$ $1/2$ 0 \vec{sin} 0 $1/2$ $3/5$ $\sqrt{2/2}$ $3/5$ $1/2$ 0 \vec{son} 0 $1/2$ $3/5$ $\sqrt{2/2}$ $3/5$ $1/2$ 0 \vec{sin} 0 $1/2$ $3/5$ $1/2$ 0 0 0 \vec{sin} 0 $1/2$ $3/5$ $1/2$ 0 0 0 \vec{sin} 0 $1/2$ $3/5$ $1/2$ $3/5$ $1/2$ 0 \vec{sin} 0 $1/2$ sin 0 $1/2$ sin 0 0 \vec{sin} $1/2$ </td <td>Surname</td> <td colspan="2"></td>	Surname					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Student No	e one or two semest		mesters suspension penalty.		
$\frac{1}{8} \frac{1}{8} \frac{1}$	Group/Saloon					
$\frac{1}{\sin 0} = \frac{1}{\sqrt{3}/2} \frac{1}$	Signature	uthorized electronic dev		c devices into the exam room.		
$\frac{\sin \left(0\right)}{\cos \left(1\right)} \frac{1/2}{\sqrt{3}/2} \frac{3/5}{\sqrt{2}/2} \frac{\sqrt{2}/2}{\sqrt{2}/2} \frac{4/5}{\sqrt{2}/2} \frac{\sqrt{3}/2}{\sqrt{2}/2} \frac{1}{1/2}}{\sqrt{2}/2} \frac{1}{\sqrt{2}/2} $	θ 0° 30° 37	$0.10^9 \frac{Nm^2}{E_0} \approx 9 \frac{10^{-12}F}{E_0} \cdot \rho^0$	530 600 900 $k = \frac{1}{2}$	${}^{12}F \cdot e^{0.69} = 2 \cdot \mu_0 = 12 \frac{10^{-7}Tm}{10^{-7}}$		
$ \frac{\cos 1}{E} = k \int \frac{dq}{r^2} \hat{r}; \ V = k \int \frac{dq}{r}; \ \Delta U = q \Delta V; \ \lambda = \frac{Q}{L} = \frac{dq}{dt}; \ \sigma = \frac{Q}{Q} = \frac{dq}{dA}; \ \rho = \frac{Q}{V} = \frac{dq}{dV}; \ \phi_E = \int \vec{E} \cdot d\vec{A}; \ V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{A}; \ \phi_E - \int_A^B \vec{E} \cdot d\vec{A}; \ V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{A}; \ \phi_E - \int_A^B \vec{E} \cdot d\vec{A}; \ V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{A}; \ \phi_E - \int_A^B \vec{E} \cdot d\vec{A}; \ V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{A}; \ \phi_E - \int_A^B \vec{E} \cdot d\vec{A}; \ V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{A}; \ \phi_E - \int_A^B \vec{E} \cdot d\vec{A}; \ V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{A}; \ \phi_E - \int_A^B \vec{E} \cdot d\vec{A}; \ V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{A}; \ \phi_E - \int_A^B \vec{E} \cdot d\vec{A}; \ V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{A}; \ \phi_E - \int_A^B \vec{E} \cdot d\vec{A}; \ V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{A}; \ \phi_E - \int_A^B \vec{E} \cdot d\vec{A}; \ V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{A}; \ e_E - V_A \vec{A}; \ V_E - V_E \vec{A}; \ V_E - V_E \vec{A}; \ V_E - V_E \vec{A}; \ V_E + V_E \vec{A}; \ V_E + V_E \vec{A}; \ V_E \vec{A}; \ V_E - V_E \vec{A}; \ V_E + V_E \vec{A}; \ V_E - V_E \vec{A}; \ V_E + V_E \vec{A}; \ V_E $	in 0 1/2 3/	0 11	$4/5 \sqrt{3}/2 = 1$			
$\begin{aligned} \Delta V &= Ed; \ E_y = \frac{\sigma}{2\epsilon_0}; \ E_i = \frac{\sigma}{\epsilon_0}; \ p = aq; \ \vec{t} = \vec{p} \times \vec{E}; \ U = -\vec{p} \cdot \vec{E}; \ C = \frac{ Q }{ \Delta V }; \ C = \frac{\epsilon_0 A}{a}; \ U = \frac{1}{2} CV^2; \ \frac{1}{c_eq} = \sum_i \frac{1}{c_i}; \ C_{eq} = \sum_i C_i; \ C = V = \frac{V_0}{\kappa}; \ E = \frac{\epsilon_0}{\kappa}; \ U = \frac{U_0}{\kappa}; \ W = \int \vec{F} \cdot d\vec{r}; \ W = -\Delta U; \ I = \frac{dq}{dt}; \ I = nqv_d A; \ R = \rho \frac{\ell}{A}; \ \vec{J} = \sigma \vec{E}; \ R = \frac{dV}{I}; \ \sigma = \frac{1}{\rho}; \ J = \frac{1}{a}; \ \tau = RC; \ V = IR; I \\ I(t) = I_0 \left(1 - e^{-t/\tau}\right); \ q(t) = Q_0 e^{-t/\tau}; \ I(t) = I_0 e^{-t/\tau}; \ q(t) = Q_0 \left(1 - e^{-t/\tau}\right); \ P = IV = I^2R; \ \vec{F}_B = q\vec{v} \times \vec{B}; \ \vec{F}_B = I\vec{1} \times \vec{B}; \ \vec{\tau} = \vec{\mu} \times \vec{B} \\ \vec{F} = q\vec{E} + q\vec{v} \times \vec{B}; \ U = -\vec{\mu} \cdot \vec{B}; \ d\vec{B} = \frac{\mu_0 d\vec{S} \times \vec{r}}{dt}; \ \varphi_B = \int \vec{B} \cdot d\vec{A}; \ B = \mu_0 \frac{N}{t} I = \mu_0 nI; \ \phi \vec{B} \cdot d\vec{I} = \mu_0 (I + I_d); \ I_d = \epsilon_0 \frac{d\phi_E}{dt}; \ \vec{\mu} = I\vec{A}; \ B = \mu \\ \epsilon = \phi \vec{E} \cdot d\vec{I} = -\frac{d\phi_B}{dt}; \ \epsilon_L = -N \frac{d\phi_B}{dt} = -L \frac{d}{dt}; \ I_{rms} = \frac{lmax}{\sqrt{2}}; \ \Delta V_{rms} = \frac{\Delta V_{max}}{\sqrt{2}}; \ X_L = Lw; \ X_C = \frac{1}{c_w}; \ tg\phi = \left(\frac{X - X}{R}\right); \ I_{max} = \frac{\Delta V_{max}}{R} \\ w = \frac{1}{\sqrt{Lc}}; \ Z = \sqrt{R^2 + (X_L - X_C)^2}; \ p > I_{rms} \Delta V_{rms} \cos(\phi); \ \Delta v_R = \Delta V_R \sin(wt); \ \Delta v_C = \Delta V_C \sin(wt - \frac{\pi}{2}); \ \Delta v_L = \Delta V_L \sin(wt + \frac{\pi}{2}) \\ \Delta V_L = I_{max}X_L; \ \Delta V_C = I_{max}X_C; \ \Delta V_R = I_{max}R; \ \omega_0 = \frac{1}{\sqrt{Lc}}; \ T = \frac{R}{R}; \ I = \frac{e}{R} \left(1 - e^{-\frac{R}{L}}\right); \ I = \frac{e}{R} e^{-\frac{t}{L}}; \ U_L = \frac{1}{2}L^{12}; \ u_B = \frac{1}{2} \left(\frac{B^2}{\mu_0}\right; \ M_L = N_2 \frac{d\mu_L}{m_L}; \\ L = -M \frac{dI_2}{dt}; \ \epsilon_2 = -M \frac{dI_1}{dt}; \ U_C = \frac{Q^2}{2c'}; \ Q = Q_{max}cos(\omega t + \phi); \ I_{max} = \omega Q_{max}; \ \varepsilon_{ind} = -Bl \frac{dx}{dt} = -Blv; \ P = F_{app}v; \ \Delta V_2 = \frac{N_2}{N_1} \\ \frac{dH}{dt} = -3K N \end{aligned}$ 1. A solenoid with radius R and number of turns N lies along its own axis in a timevarying magnetic field with dB/dt=3K, where K is a positive constant. At t=0, B=0. What are the magnitudes of the magnetic flux through one turn of the solenoid at any time t? A) $6NK\pi R^2t; 9NK\pi R^2$ B) $6K\pi R^2t; 9NK\pi R^2$ D) $3K\pi R^2t; 3N$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$V = \frac{v_0}{\kappa}; E = \frac{E_0}{\kappa}; U = \frac{u_0}{\kappa}; W = \int \vec{r} \cdot d\vec{r}; W = -\Delta U; I = \frac{dq}{dt}; I = nqv_d A; R = \rho_A^{\vec{r}}, \vec{j} = \sigma \vec{E}; R = \frac{AV}{l}; \sigma = \frac{1}{\rho}; J = \frac{1}{A}; \tau = RC; V = IR; I$ $I(t) = I_0 \left(1 - e^{-t/\tau}\right); q(t) = Q_0 e^{-t/\tau}; I(t) = I_0 e^{-t/\tau}; q(t) = Q_0 \left(1 - e^{-t/\tau}\right); P = IV = I^2R; \vec{F}_B = q\vec{v} \times \vec{B}; \vec{F}_B = I\vec{l} \times \vec{B}; \vec{\tau} = \vec{\mu} \times \vec{B}$ $\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}; U = -\vec{\mu}. \vec{B}; d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{dSx^{\vec{r}}}{r^2}; \Phi_B = \int \vec{B} \cdot d\vec{A}; B = \mu_0 \frac{N}{l} I = \mu_0 nI; \phi \vec{B} \cdot d\vec{l} = \mu_0(I + I_d); I_d = \varepsilon_0 \frac{d\phi E}{dt}; \vec{\mu} = I\vec{A}; B = \mu$ $\varepsilon = \phi \vec{E} \cdot d\vec{l} = -\frac{d\phi B}{dt}; \varepsilon_L = -N \frac{d\phi B}{dt} = -L \frac{dI}{dt}; I_{rms} = \frac{I_{max}}{\sqrt{2}}; \Delta V_{rms} = \frac{\Delta V_{max}}{\sqrt{2}}; X_L = Lw; X_C = \frac{1}{cw}; tg\phi = \left(\frac{X_L - C}{R}\right); I_{max} = \frac{\Delta V_{max}}{Z}$ $w = \frac{1}{\sqrt{LC}}; Z = \sqrt{R^2 + (X_L - X_C)^2}; I_{rms}\Delta V_{rms}cos(\phi); \Delta v_R = \Delta V_R sin(wt); \Delta v_C = \Delta V_C sin(wt - \frac{\pi}{2}); \Delta v_L = \Delta V_L sin(wt + \frac{\pi}{2})$ $\Delta V_L = I_{max}X_L; \Delta V_C = I_{max}X_C; \Delta V_R = I_{max}R; \omega_0 = \frac{1}{\sqrt{LC}}; \tau = \frac{L}{R}; I = \frac{\varepsilon}{R} \left(1 - e^{-\frac{R}{L}t}\right); I = \frac{\varepsilon}{R} e^{-\frac{t}{\tau}}; U_L = \frac{1}{2}LI^2; u_B = \frac{1}{2} \left(\frac{B^2}{\mu_0}\right); M_{12} = N_2 \frac{\Phi_{12}}{N_1}$ $s_1 = -M \frac{dI_2}{dt}; \varepsilon_2 = -M \frac{dI_1}{dt}; U_C = \frac{Q^2}{2C}; Q = Q_{max}cos(\omega t + \phi); I_{max} = \omega Q_{max}; \varepsilon_{ind} = -Bl \frac{dx}{dt} = -Blv; P = F_{app} v; \Delta V_2 = \frac{N_2}{N_1} \Delta V_2 = N_2$						
$I(t) = I_0 \left(1 - e^{-t/\tau}\right); q(t) = Q_0 e^{-t/\tau}; I(t) = I_0 e^{-t/\tau}; q(t) = Q_0 \left(1 - e^{-t/\tau}\right); P = IV = I^2 R; \vec{F}_B = q\vec{v} \times \vec{B}; \vec{F}_B = I\vec{l} \times \vec{B}; \vec{\tau} = \vec{\mu} \times \vec{B}$ $\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}; U = -\vec{\mu} \cdot \vec{B}; d\vec{B} = \frac{\mu_0 l}{4\pi} \frac{d\vec{S} \times \vec{r}}{r^2}; \phi_B = \int \vec{B} \cdot d\vec{A}; B = \mu_0 \frac{N}{l} I = \mu_0 nI; \oint \vec{B} \cdot d\vec{l} = \mu_0 (I + I_d); I_d = \varepsilon_0 \frac{d\phi_E}{dt}; \vec{\mu} = I\vec{A}; B = \mu_0 \vec{E} + q\vec{v} \times \vec{B}; U = -\vec{R}, \vec{E} = -N \frac{d\phi_B}{dt} = -L \frac{dt}{dt}; I_{rms} = \frac{I_{max}}{\sqrt{2}}; \Delta V_{rms} = \frac{\Delta V_{max}}{\sqrt{2}}; X_L = Lw; X_C = \frac{1}{Cw}; tg\phi = \left(\frac{X_L - X_C}{R}\right); I_{max} = \frac{\Delta V_{max}}{Z}$ $w = \frac{1}{\sqrt{LC}}; Z = \sqrt{R^2 + (X_L - X_C)^2}; = I_{rms} \Delta V_{rms} cos(\phi); \Delta v_R = \Delta V_R sin(wt); \Delta v_C = \Delta V_C sin\left(wt - \frac{\pi}{2}\right); \Delta v_L = \Delta V_L sin\left(wt + \frac{\pi}{2}\right)$ $\Delta V_L = I_{max} X_L; \Delta V_C = I_{max} X_C; \Delta V_R = I_{max} R; \omega_0 = \frac{1}{\sqrt{LC}}; \tau = \frac{L}{R}; I = \frac{\varepsilon}{R} \left(1 - e^{-\frac{R}{L}t}\right); I = \frac{\varepsilon}{R} e^{-\frac{t}{t}}; U_L = \frac{1}{2}LI^2; u_B = \frac{1}{2} \left(\frac{B^2}{\mu_0}\right); M_{12} = N_2 \frac{\phi_{12}}{I_1}$ $\varepsilon_1 = -M \frac{dI_2}{dt}; \varepsilon_2 = -M \frac{dI_1}{dt}; U_C = \frac{Q^2}{2C}; Q = Q_{max} cos(\omega t + \phi); I_{max} = \omega Q_{max}; \varepsilon_{ind} = -BI \frac{dx}{dt} = -BIv; P = F_{app}v; \Delta V_2 = \frac{N_2}{N_1} \Delta V_2 = \frac{N_2}{N_1} \Delta V_2$ A) 6NK $\pi R^2 t; 9NK \pi R^2$ B) 6K $\pi R^2 t; 9NK \pi R^2$ D) 3K $\pi R^2 t; 3NK \pi R^2$	$ \Delta V = Ed; \ E_y = \frac{\sigma}{2\varepsilon_0}; \ E_i = \frac{\sigma}{\varepsilon_0}; \ p = aq; \ \vec{\tau} = \vec{p} \times \vec{E}; \ U = -\vec{p}. \vec{E}; \ C = \frac{ Q }{ \Delta V }; \ C = \frac{\varepsilon_0 A}{d}; \ U = \frac{1}{2}CV^2; \ \frac{1}{c_{eq}} = \sum_i \frac{1}{c_i}; \ C_{eq} = \sum_i C_i; \ C = \kappa C_0$					
$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}; U = -\vec{\mu} \cdot \vec{B}; d\vec{B} = \frac{\mu_0 l}{4\pi} \frac{d\vec{S} \times \vec{r}}{r^2}; \Phi_B = \int \vec{B} \cdot d\vec{A}; B = \mu_0 nl; \phi \vec{B} \cdot d\vec{l} = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); l_d = \varepsilon_0 \frac{d\phi_E}{dt}; \mu = l\vec{A}; B = \mu_0 (l + l_d); \mu = l\vec{A}; B = \mu_0 (l + l_d); \mu = l\vec{A}; B = \mu_0 (l + l_d); \mu = l\vec{A}; B = \mu_0 (l + l_d); \mu = l\vec{A}; B = \mu_0 (l + l_d); \mu = l\vec{A}; B = \mu_0 (l + l_d); \mu = l\vec{A}; B = \mu_0 (l + l_d); \mu = l\vec{A}; B = \mu_0 (l + l_d); \mu = l\vec{A}; B = \mu_0 (l + l_d); \mu = l\vec{A}; B = \mu_0 (l + l_d); \mu = l\vec{A}; B = \mu_0 (l + l_d); \mu = l\vec{A};$	r · · · · ·					
$\varepsilon = \oint \vec{E} \cdot d\vec{l} = -\frac{d\phi_B}{dt}; \\ \varepsilon_L = -N\frac{d\phi_B}{dt} = -L\frac{dl}{dt}; \\ I_{rms} = \frac{I_{max}}{\sqrt{2}}; \\ \Delta V_{rms} = \frac{\Delta V_{max}}{\sqrt{2}}; \\ X_L = Lw; \\ X_C = \frac{1}{Cw}; \\ tg\phi = \left(\frac{X_L - X_C}{R}\right); \\ I_{max} = \frac{\Delta V_{max}}{2}; \\ w = \frac{1}{\sqrt{LC}}; \\ Z = \sqrt{R^2 + (X_L - X_C)^2}; \\ \phi > = I_{rms} \Delta V_{rms} cos(\phi); \\ \Delta v_R = \Delta V_R sin(wt); \\ \Delta v_C = \Delta V_C sin\left(wt - \frac{\pi}{2}\right); \\ \Delta v_L = I_{max} X_L; \\ \Delta V_C = I_{max} X_C; \\ \Delta V_R = I_{max} R; \\ \omega_0 = \frac{1}{\sqrt{LC}}; \\ \tau = \frac{L}{R}; \\ I = \frac{\varepsilon}{R} \left(1 - e^{-\frac{R}{L}t}\right); \\ I = \frac{\varepsilon}{R} e^{-\frac{t}{\tau}}; \\ U_L = \frac{1}{2}LI^2; \\ u_B = \frac{1}{2}\left(\frac{B^2}{\mu_0}\right); \\ M_{12} = N_2\frac{\phi_{12}}{I_1}; \\ \varepsilon_1 = -M\frac{dI_2}{dt}; \\ \varepsilon_2 = -M\frac{dI_1}{dt}; \\ U_C = \frac{Q^2}{2c}; \\ Q = Q_{max}cos(\omega t + \phi); \\ I_{max} = \omega Q_{max}; \\ \varepsilon_{ind} = -Bl\frac{dx}{dt} = -Blv; \\ P = F_{app}v; \\ \Delta V_2 = \frac{N_2}{N_1}\Delta V$						
$w = \frac{1}{\sqrt{LC}}; Z = \sqrt{R^2 + (X_L - X_C)^2}; = I_{rms} \Delta V_{rms} cos(\phi); \Delta v_R = \Delta V_R sin(wt); \Delta v_C = \Delta V_C sin\left(wt - \frac{\pi}{2}\right); \Delta v_L = \Delta V_L sin\left(wt + \frac{\pi}{2}\right); \Delta v_L = I_{max} X_L; \Delta V_C = I_{max} X_C; \Delta V_R = I_{max} R; \omega_0 = \frac{1}{\sqrt{LC}}; \tau = \frac{L}{R}; I = \frac{\varepsilon}{R} \left(1 - e^{-\frac{R}{L}t}\right); I = \frac{\varepsilon}{R} e^{-\frac{t}{\tau}}; U_L = \frac{1}{2}LI^2; u_B = \frac{1}{2} \left(\frac{B^2}{\mu_0}\right); M_{12} = N_2 \frac{\phi_{12}}{I_1}; \varepsilon_1 = -M \frac{dI_2}{dt}; \varepsilon_2 = -M \frac{dI_1}{dt}; U_C = \frac{Q^2}{2C}; Q = Q_{max} cos(\omega t + \phi); I_{max} = \omega Q_{max}; \varepsilon_{ind} = -Bl \frac{dx}{dt} = -Blv; P = F_{app}v; \Delta V_2 = \frac{N_2}{N_1} \Delta V_2 = \frac{N_2}{N_1} \Delta V_2$ 1. A solenoid with radius R and number of turns N lies along its own axis in a time-varying magnetic field with dB/dt=3K, where K is a positive constant. At t=0, B=0. What are the magnitudes of the magnetic flux through one turn of the solenoid and the electromotive force (emf) induced in the solenoid at any time t? A) $6NK\pi R^2 t; 9NK\pi R^2$ B) $6K\pi R^2 t; 9NK\pi R^2$ D) $3K\pi R^2 t; 3NK\pi R^2$	$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}; U = -\vec{\mu}.\vec{B}; d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \vec{r}}{r^2}; \Phi_B = \int \vec{B} \cdot d\vec{A}; B = \mu_0 \frac{N}{l} I = \mu_0 nI; \ \oint \vec{B} \cdot d\vec{l} = \mu_0 (I + I_d); \ I_d = \varepsilon_0 \frac{d\phi_E}{dt}; \vec{\mu} = I\vec{A}; \ B = \mu_0 nI$					
$\Delta V_L = I_{max} X_L; \Delta V_C = I_{max} X_C; \Delta V_R = I_{max} R; \ \omega_0 = \frac{1}{\sqrt{LC}}; \tau = \frac{L}{R}; I = \frac{\varepsilon}{R} \left(1 - e^{-\frac{R}{L}t}\right); I = \frac{\varepsilon}{R} e^{-\frac{t}{\tau}}; U_L = \frac{1}{2}LI^2; \ u_B = \frac{1}{2} \left(\frac{B^2}{\mu_0}\right); \ M_{12} = N_2 \frac{\Phi_{12}}{I_1}$ $\varepsilon_1 = -M \frac{dI_2}{dt}; \ \varepsilon_2 = -M \frac{dI_1}{dt}; \ U_C = \frac{Q^2}{2C}; \ Q = Q_{max} cos(\omega t + \varphi); \ I_{max} = \omega Q_{max}; \ \varepsilon_{ind} = -Bl \frac{dx}{dt} = -Blv; \ P = F_{app}v; \ \Delta V_2 = \frac{N_2}{N_1} \Delta V_2 = \frac{N_2}{N_1} \Delta V_2$ 1. A solenoid with radius R and number of turns N lies along its own axis in a time- varying magnetic field with dB/dt=3K, where K is a positive constant. At t=0, B=0. What are the magnitudes of the magnetic flux through one turn of the solenoid and the electromotive force (emf) induced in the solenoid at any time t? A) $6NK\pi R^2 t; 9NK\pi R^2$ B) $6K\pi R^2 t; 9NK\pi R^2$ D) $3K\pi R^2 t; 3NK\pi R^2$						
$\varepsilon_{1} = -M \frac{dI_{2}}{dt}; \varepsilon_{2} = -M \frac{dI_{1}}{dt}; U_{C} = \frac{Q^{2}}{2C}; Q = Q_{max} cos(\omega t + \varphi); I_{max} = \omega Q_{max}; \varepsilon_{ind} = -Bl \frac{dx}{dt} = -Blv; P = F_{app}v; \Delta V_{2} = \frac{N_{2}}{N_{1}} \Delta V_{2}$ 1. A solenoid with radius R and number of turns N lies along its own axis in a time- varying magnetic field with dB/dt=3K, where K is a positive constant. At t=0, B=0. What are the magnitudes of the magnetic flux through one turn of the solenoid and the electromotive force (emf) induced in the solenoid at any time t? A) $6NK\pi R^{2}t; 9NK\pi R^{2}$ B) $6K\pi R^{2}t; 9NK\pi R^{2}$ C) $9K\pi R^{2}t; 9NK\pi R^{2}$ D) $3K\pi R^{2}t; 3NK\pi R^{2}$						
1. A solenoid with radius R and number of turns N lies along its own axis in a time- varying magnetic field with dB/dt=3K, where K is a positive constant. At t=0, B=0. What are the magnitudes of the magnetic flux through one turn of the solenoid and the electromotive force (emf) induced in the solenoid at any time t? A) $6NK\pi R^2 t$; $9NK\pi R^2$ B) $6K\pi R^2 t$; $9NK\pi R^2$ C) $9K\pi R^2 t$; $9NK\pi R^2$ D) $3K\pi R^2 t$; $3NK\pi R^2$						
varying magnetic field with dB/dt=3K, where K is a positive constant. At t=0, B=0. What are the magnitudes of the magnetic flux through one turn of the solenoid and the electromotive force (emf) induced in the solenoid at any time t? A) $6NK\pi R^2 t$; $9NK\pi R^2$ B) $6K\pi R^2 t$; $6NK\pi R^2$ C) $9K\pi R^2 t$; $9NK\pi R^2$ D) $3K\pi R^2 t$; $3NK\pi R^2$	$\varepsilon_1 = -M\frac{dI_2}{dt}; \\ \varepsilon_2 = -M\frac{dI_1}{dt}; \\ U_C = \frac{Q^2}{2c'}; \\ Q = Q_{max}cos(\omega t + \varphi); \\ I_{max} = \omega Q_{max}; \\ \varepsilon_{ind} = -Bl\frac{dx}{dt} = -Blv; \\ P = F_{app}v; \\ \Delta V_2 = \frac{N_2}{N_1}\Delta V_1 = \frac{N_2}{N$					
B) $6K\pi R^2 t$; $6NK\pi R^2$ C) $9K\pi R^2 t$; $9NK\pi R^2$ D) $3K\pi R^2 t$; $3NK\pi R^2$	varying magnetic field with dB/dt=3K, where K is a positive constant. At t=0, B=0. What are the magnitudes of the magnetic flux through one turn of the solenoid and the electromotive force (emf) induced in the solenoid at any time t? $\vec{B} \rightarrow R$ $\vec{D} = R$					
C) $9K\pi R^2 t$; $9NK\pi R^2$ D) $3K\pi R^2 t$; $3NK\pi R^2$						
	C) $9K\pi R^2 t$; $9NK\pi R^2$					
$ E 3NK\pi R^2 t; 3NK\pi R^2$						
) 3NKπR ² t; 3NKπI					
V_P V_P V_P V_F V_F V_F V_A . A uniform current <i>I</i> begins to flow through the Helmholtz coils at time <i>t</i> the distance between the plates is <i>d</i> , and a voltage V_P is applied between the Which of the following is correct? A) To determine the e/m ratio using the Lorentz force, the current in the coils reflections of the context of the cont	escent screen placed between an electron gun. $_{F}$ are accelerated by a voltage Helmholtz coils at time $t > 0$. V_{P} is applied between them.					

I = 0

B) At t = 0, plate number 2 is negatively charged. C) If the current flows counterclockwise through the coils, the beam deflects downward.

D) The magnitude of V_P does not affect the amount of horizontal deflection. E) The magnitude of V_A is inversely proportional to the kinetic energy of the beam.

Questions 3-4) A circular silver wire with resistance R and radius 2r is placed in a uniform magnetic field perpendicular to its plane. The magnetic field strength increases from t = 0 to t = T according to the relation $B = B_0 \left(3 + \frac{5t}{T}\right)$, where t is in seconds and B_0 is a positive constant. **3**. What is the magnetic flux in Wb through the wire at $t = \frac{T}{r}$? A) $32B_0\pi r^2$ B) $16B_0\pi r^2$ C) $12B_0\pi r^2$ D) $8B_0\pi r^2$ E) $36B_0\pi r^2$ **4.** Which of the following correctly gives the total induced current in the loop from t = 0 to t = T? A) $4B_0\pi r^2/RT$ counterclockwise B) $20B_0\pi r^2/RT$ clockwise C) $4B_0\pi r^2/RT$ clockwise D) $16B_0\pi r^2/RT$ counterclockwise E) $20B_0\pi r^2/RT$ counterclockwise 5. What is the induced electric field vector at point P? A) $5B_0r/2T(-\hat{\imath})$ B) $10B_0r/T(\hat{\imath})$ C) $5B_0r/2T(\hat{\imath})$ D) $2B_0r/T(\hat{\imath})$ E) $10B_0r/T(-\hat{\imath})$ **Ouestions 6-7)** Three infinitely large insulating plates are placed parallel to each other with equal spacing *d*. The surface charge densities of the plates are $\sigma_1 = 10 \ \mu C/m^2$, $\sigma_2 = -20 \ \mu C/m^2$ and $\sigma_3 = 5 \ \mu C/m^2$, respectively. 6. What is the electric field vector in region A, in units of V/m? C ₿ A) $\frac{5}{18}10^{6}(-\hat{\imath})$ B) $\frac{35}{18}10^{6}(\hat{\imath})$ C) $\frac{5}{18}10^{6}(\hat{\imath})$ D) $\frac{45}{18}10^{6}(-\hat{\imath})$ E) $\frac{25}{18}10^{6}(\hat{\imath})$ **7.** What is the potential difference $|E_E - E_F|$ between points E and F in region B? A) $\frac{45}{9}$ 10⁶ B) $\frac{5}{9}$ 10⁶ C) $\frac{15}{18}$ 10⁶ D) $\frac{25}{9}$ 10⁶ E) $\frac{50}{18}$ 10⁶ 8. Laboratory Question A conducting rod of length L=2.5 cm is placed perpendicular to a uniform magnetic field (B=0.5 T), located in the shaded region of the xy-plane. The conducting rod is vertically attached to the end of a dynamometer and connected horizontally via weightless wires to a battery and an ammeter. The conducting rod, which has negligible mass, carries a steady current *I*. According to the analysis of a researcher using this experimental setup, which of the following statements is incorrect? B A) If $\vec{B} = B\hat{k}$ the conducting rod moves downward. B) As the current through the conducting rod increases, the rod continues to move downward. C) If the current through the rod is 8 *A* and the dynamometer points 104 *mN*, the absolute error is 4 *mN*. D) If the current through the rod is 4 *A* and the dynamometer points 52 *mN*, the relative error is 0.01. E) If the current through the rod is 2 *A*, the dynamometer points 25 *mN*.

Questions 16-17) A toroid with rectangular cross-section has *N* turns, an outer N radius of 3R, an inner radius of 3R/2, and a height d. **16.** What is the self-inductance of the toroid? A) $\frac{N\mu_0 d}{2\pi} ln(2)$ 3*R* B) $\frac{N^2 \mu_0}{4\pi} ln\left(\frac{2}{3}\right)$ 3R/2C) $\frac{\frac{4\pi}{N^2 \mu_0}}{2\pi} ln\left(\frac{3}{2}\right)$ D) $\frac{N^2 \mu_0 d}{2\pi} ln(2)$ E) $\frac{N\mu_0}{2\pi} ln\left(\frac{2}{3}\right)$ 17. If a constant current *I* flows through the toroid, which of the following correctly gives the energy stored in the toroid? A) $\frac{N^2 \mu_0 dI^2}{8\pi} ln\left(\frac{2}{3}\right)$ B) $\frac{N \mu_0 dI^2}{2\pi} ln(2)$ C) $\frac{N \mu_0 I^2}{2\pi} ln\left(\frac{2}{3}\right)$ D) $\frac{N^2 \mu_0 I^2}{4\pi} ln\left(\frac{2}{3}\right)$ E) $\frac{N^2 \mu_0 dI^2}{4\pi} ln(2)$ **18.** An ideal transformer has 200 primary turns and 100 secondary turns. If a current of 1.2 A and a potential difference of 80 V is applied across the primary circuit, what is the current in the secondary circuit? A) 2.4 A B) 0.6 A C) 4.8 A D) 8/3 A E) 3 A Questions 19-20) In the given circuit, a resistor, inductor, and capacitor are connected in series to an alternating voltage source. $R = 3\Omega \quad X_L = 6\Omega \quad X_C = 2\Omega$ **19.** Which of the following correctly gives the circuit's impedance and effective current? $5\sqrt{2} \sin 100\pi t$ A) 5Ω ; 2A B) 11 Ω; $\sqrt{2}$ A C) 11 Ω ; $\sqrt{2} A$ D) $5\sqrt{2} \Omega$; 1 A E) 5 Ω; 1 A **20.** Which of the following correctly gives the phase difference in the circuit shown? A) 53⁰ B) 37⁰ C) 0^{0} D) 45⁰ E) 90⁰

1-D	11-В
2-A	12-C
3-В	13-Е
4-E	14-E
5-A	15-C
6-C	16-D
7-D, E	17-Е
8-D	18-A
9-E	19-Е
10-E	20-A