The electric field in a region is given by $\vec{E}=2 x \hat{\imath}+3 y^{2} \hat{\jmath}$. Which of the followings is the work done by the electrostatic force to displace the point charge $q=+2.0 n C$ between the points from $A(1.0,2.0,0.0)(m)$ to $B(3.0,1.0,3.0)(m)$ in nano-Joules?
А) 2.0
B) -4.0
C) -2.0
D) 4.0
E) 0.0

2

Switch S is closed at $t=0$ in the circuit. Find the current across the resistor R_{4} at $t=0$.
$R_{1}=2(\Omega), R_{2}=2(\Omega), R_{3}=2(\Omega), R_{4}=2(\Omega), R_{5}=2(\Omega)$, $L_{1}=1(\mathrm{mH}), L_{2}=2(\mathrm{mH}), \varepsilon=4(V)$

A) 0.5 A
B) 0.75 A
C) 1.0 A
D) 1.6 A
E) 1.25 A

3

Switch S is closed at $t=0$ in the circuit. Find the current across the resistor R_{3} at $t=\infty$ in Amperes.
$R_{1}=2(\Omega), R_{2}=2(\Omega), R_{3}=2(\Omega), R_{4}=2(\Omega), R_{5}=2(\Omega)$, $L_{1}=1(\mathrm{mH}), L_{2}=2(\mathrm{mH}), \varepsilon=4(V)$

A) 0
B) 1.5
C) 1.0
D) 2.3
E) 1.8

4

The switch S_{1} is closed at $t=0$. Find the current $I_{1}(t)$ in the circuit as a function of time while the switch S_{2} is open. $R_{1}=R, R_{2}=R$
A) $\frac{\varepsilon}{2 R}\left(1-e^{-\frac{2 R t}{L}}\right)$

В) $\frac{\varepsilon}{3 R}\left(1-e^{-\frac{3 R t}{L}}\right)$
C) $\frac{\varepsilon}{R}\left(1-e^{-\frac{R t}{L}}\right)$
D) $\frac{2 \varepsilon}{3 R}\left(1-e^{-\frac{3 R t}{2 L}}\right)$
E) $\frac{\varepsilon}{R}\left(1-e^{-\frac{2 R t}{L}}\right)$
S_{1} and S_{2} are closed for a long time. Find the currents I_{3} and the charge Q on the capacitor at steady state. $R_{1}=R, R_{2}=R$
A) $I_{3}=\frac{\varepsilon}{2 R} \quad Q=\frac{\varepsilon C}{2}$
В) $I_{3}=\frac{2 \varepsilon}{5 R} \quad Q=\frac{\varepsilon C}{5}$

C) $I_{3}=\frac{2 \varepsilon}{5 R} \quad Q=\frac{4 \varepsilon C}{5}$
D) $I_{3}=\frac{\varepsilon}{4 R} \quad Q=\frac{\varepsilon C}{4}$
E) $I_{3}=\frac{\varepsilon}{2 R} \quad Q=\frac{\varepsilon C}{4}$

6
In a series RLC circuit $I_{r m s}=0,1 A, \Delta V_{r m s}=60 \mathrm{~V}$, and the current leads the voltage by $\frac{\pi}{4} \mathrm{rad}$. Calculate the average power $P_{a v}$ delivered to the circuit in Watts.
A) $3 \sqrt{2}$
В) 2.5
C) $8 \sqrt{3}$
D) $15 \sqrt{2}$
E) $7.5 \sqrt{3}$

7
In a series RLC circuit $I_{r m s}=0,1 A, \Delta V_{r m s}=60 \mathrm{~V}$, and the current leads the voltage by $\frac{\pi}{4} \mathrm{rad}$. Which of the followings is the resistance of the circuit in ohms?
A) $300 \sqrt{2}$
B) $250 \sqrt{2}$
C) $200 \sqrt{2}$
D) $150 \sqrt{2}$
E) $350 \sqrt{2}$

8
Two metal spheres in the figure are separated by a distance that is much greater than their radii. They are to be connected by a conducting wire of total resistance R . The sphere of radius $r_{2}=a$ is uncharged and the sphere of radius $r_{1}=2 a$ has a total charge of $q=+Q$ on it.

Find the electrostatic potential energy of the two-sphere system before switch S is closed.
A) $\frac{Q^{2}}{16 \pi \varepsilon_{0} a}$
В) $\frac{Q^{2}}{4 \pi \varepsilon_{0} a}$
C) $\frac{Q^{2}}{24 \pi \varepsilon_{0} a}$
D) $\frac{Q^{2}}{6 \pi \varepsilon_{0} a}$
E) $\frac{9 Q^{2}}{16 \pi \varepsilon_{0} a}$

Two metal spheres in the figure are separated by a distance that is much greater than their radii. They are to be connected by a conducting wire of total resistance R . The sphere of radius $r_{2}=a$ is uncharged and the sphere of radius $r_{1}=2 a$ has a total charge of $q=+Q$ on it.

Find the current through the wire immediately after the switch S is closed.
A) $\frac{Q}{8 \pi \varepsilon_{0} a R}$
B) $\frac{Q}{4 \pi \varepsilon_{0} a R}$
C) $\frac{5 Q}{12 \pi \varepsilon_{0} a R}$
D) $\frac{Q}{2 \pi \varepsilon_{0} a R}$
E) $\frac{Q}{\pi \varepsilon_{0} a R}$

10

The uniform magnetic field inside the circular conducting wire of radius $r=$ $0.5(\mathrm{~m})$ is directed into the page plane and varies with time as $B(t)=a t^{2}+$ $b(T)$ where $a=2.0\left(\frac{T}{s^{2}}\right)$ and $b=4.0(T)$ and time is in second. $\pi=3$

How much electromotive force induce in the circuit $|\varepsilon|$ at $t=1.0(s)$ in Volts?

А) 3.0
B) 48
C) 360
D) 768
E) 120

11

The uniform magnetic field inside the circular conducting wire of initial radius of $r=a$ is directed into the page plane and is given as $B=4.0(T)$. The radius of the circle decreses at a constant rate of $\frac{d r}{d t}=-0.25\left(\frac{m}{s}\right)$. Wire is always in circular shape.

Find the electric field induced at a point at a distance $2 a$ from the centre of the circle at $t=0(s)$ in SI units?

А) 0.5
В) 1.0
C) 0.4
D) 0.3
E) 0.6

12
A closed loop carrying a constant current $I=2.0(A)$ is in a uniform magnetic field given by $\vec{B}=2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ as shown in the figure. $a=0.5(\mathrm{~m})$ Find the potential energy of the magnetic dipole in Joules.
A) 1
B) 8
C) 24
D) 36
E) 4

An infinite sheet of current in $z=0$ plane has uniform current density $\vec{J}_{S}=J_{s} \hat{\imath}\left(\frac{A}{m}\right)$. A right triangle current loop is placed parallel to the current sheet so that the right corner is on the z axis as shown in the figure.

Find the magnitude of the force acting on AB segment of the loop due to the current sheet for $J_{S}=5.0\left(\frac{A}{m}\right), I=1.0(A)$ and $a=2.0(m)$.
A) $5 \mu_{0}$
B) $20 \mu_{0}$
C) $2 \mu_{0}$
D) $30 \mu_{0}$
E) $4 \mu_{0}$

14

An infinite sheet of current in $z=0$ plane has uniform current density $\vec{J}_{s}=J_{S} \hat{\imath}\left(\frac{A}{m}\right)$. A right triangle current loop is placed parallel to the current sheet so that the right corner is on the z axis as shown in the figure.

Find the magnitude of the torque acting on the current e loop due to the current sheet for $I=2.0(A), J_{S}=2.0\left(\frac{A}{m}\right)$ and $a=1.0(\mathrm{~m})$

A) μ_{0}
B) $40 \mu_{0}$
C) $45 \mu_{0}$
D) $10 \mu_{0}$
E) $12.5 \mu_{0}$

15

A semicircular conductor of radius $R=1.0(\mathrm{~m})$ is rotated about the axis AC at a constant rate of $\omega=60(\mathrm{rad} / \mathrm{s})$ angular velocity. A uniform magnetic field of magnitude $B=2(T)$ fills the entire region below the axis and is directed out of the page. Calculate the maximum value of the emf induced between the ends of the conductor in Volts. ($\pi=3$)

A) 180
В) 120
C) 75
D) 90
E) 135

16

The magnetic flux through a coil changes over time as shown in the figure. The time rate of current flowing the coil is $\frac{d I}{d t}=3\left(\frac{A}{s}\right)$. Which of the following is the inductance of the coil in Henry? Where $\Phi_{0}=2.0\left(\mathrm{Tm}^{2}\right)$.
A) 1
B) 1.5
C) 2
D) 3
E) 2.5

A truncated conical surface of radius $r_{1}=5.0(\mathrm{~m}), r_{2}=3.0(\mathrm{~m})$ and height $h=5.0(\mathrm{~m})$ is placed in a uniform electric field $\vec{E}=2.0 \hat{\imath}\left(\frac{N}{C}\right)$. Find the electric flux through the side surface of the cone in SI units. ($\pi=3$)
A) 96
B) 45
C) 72
D) 27
E) 42

18

The voltage across a parallel-plate capacitor with area $A=2.0\left(\mathrm{~cm}^{2}\right)$ and separation $d=0.05(\mathrm{~cm})$ varies with time t as $V(t)=5.0 \ln (2 t)$ (Volt). Find the displacement current between the plates at $t=2.0(s)$.
A) ε_{0}
В) $\frac{3}{2} \varepsilon_{0}$
C) $5 \varepsilon_{0}$
D) $2 \varepsilon_{0}$
E) $4 \varepsilon_{0}$

19

As shown in the figure, a very long cylindrical rod with radius $R=3.0(\mathrm{~m})$ is carrying a nonuniform current density $J=\alpha r$. Where r is the radial distance and α is a positive constant. If the magnitude of magnetic field is $B=0.5(T)$ at $r=\frac{3}{2} R$, what is the constant α in SI units? $\pi=3$
A) $\frac{1}{4 \mu_{0}}$
В) $\frac{1}{2 \mu_{0}}$
C) $\frac{3}{4 \mu_{0}}$
D) $\frac{3}{2 \mu_{0}}$
E) $\frac{3}{\mu_{0}}$

20

As shown in the figure, a very long cylindrical rod with radius $R=3.0(\mathrm{~m})$ is carrying a nonuniform current density $J=\frac{r}{\mu_{0}}\left(\frac{A}{m^{2}}\right)$. Where r is the radial distance and α is a positive constant. Find the magnitude of magnetic field at $r=R / 2$ in SI units?

A) $\frac{3}{4}$
В) $\frac{1}{3}$
C) $\frac{4}{3}$
D) 3
E) $\frac{1}{12}$

