The electric field in a region is given by $\vec{E} = 2x\hat{i} + 3y^2\hat{j}$. Which of the followings is the work done by the electrostatic force to displace the point charge q = +2.0nC between the points from A(1.0,2.0,0.0) (*m*) to B(3.0,1.0,3.0)(m) in nano-Joules?

C) 1.0 A

A) 2.0 **B**) -4.0 **C**) -2.0 **D**) 4.0 **E**) 0.0

2

Switch S is closed at t = 0 in the circuit. Find the current across the resistor R_4 at t = 0.

$$\begin{split} R_1 &= 2 \; (\Omega), \, R_2 = 2 \; (\Omega), \, R_3 = 2 \; (\Omega), \, R_4 = 2 \; (\Omega), \, R_5 = 2 \; (\Omega), \\ L_1 &= 1 \; (\text{mH}), \, L_2 = 2 \; (\text{mH}), \, \varepsilon = 4 \; (V) \end{split}$$

B) 0.75 A

A) 0.5 A

3

Switch S is closed at t = 0 in the circuit. Find the current across the resistor R_3 at $t = \infty$ in Amperes.

 $\begin{array}{l} R_{1}=2\ (\Omega), R_{2}=2\ (\Omega), R_{3}=2\ (\Omega), R_{4}=2\ (\Omega), R_{5}=2\ (\Omega), \\ L_{1}=1\ (\mathrm{mH}), L_{2}=2\ (\mathrm{mH}), \\ \varepsilon=4\ (V) \end{array}$

A) 0	B) 1.5	C) 1.0	D) 2.3	E) 1.8
/		,	,	

4

The switch S_1 is closed at t = 0. Find the current $I_1(t)$ in the circuit as a function of time while the switch S_2 is open. $R_1 = R$, $R_2 = R$

D) 1.6 A

 S_1 and S_2 are closed for a long time. Find the currents I_3 and the charge Q on the capacitor at steady state. $R_1 = R$, $R_2 = R$

A)
$$I_3 = \frac{\varepsilon}{2R}$$
 $Q = \frac{\varepsilon C}{2}$
B) $I_3 = \frac{2\varepsilon}{5R}$ $Q = \frac{\varepsilon C}{5}$

C)
$$I_3 = \frac{2\varepsilon}{5R}$$
 $Q = \frac{4\varepsilon}{5}$
D) $I_3 = \frac{\varepsilon}{4R}$ $Q = \frac{\varepsilon C}{4}$

E)
$$I_3 = \frac{\varepsilon}{2R}$$
 $Q = \frac{\varepsilon C}{4}$

6

In a series RLC circuit $I_{rms} = 0.1A$, $\Delta V_{rms} = 60V$, and the current leads the voltage by $\frac{\pi}{4}$ rad. Calculate the average power P_{av} delivered to the circuit in Watts.

7

In a series RLC circuit $I_{rms} = 0, 1A, \Delta V_{rms} = 60V$, and the current leads the voltage by $\frac{\pi}{4}$ rad. Which of the followings is the resistance of the circuit in ohms?

A) $300\sqrt{2}$ **B)** $250\sqrt{2}$ **C)** $200\sqrt{2}$ **D)** $150\sqrt{2}$ **E)** $350\sqrt{2}$

8

Two metal spheres in the figure are separated by a distance that is much greater than their radii. They are to be connected by a conducting wire of total resistance R. The sphere of radius $r_2 = a$ is uncharged and the sphere of radius $r_1 = 2a$ has a total charge of q = +Q on it.

Find the electrostatic potential energy of the two-sphere system before switch S is closed.

A)
$$\frac{Q^2}{16\pi\varepsilon_0 a}$$
 B) $\frac{Q^2}{4\pi\varepsilon_0 a}$ **C**) $\frac{Q^2}{24\pi\varepsilon_0 a}$ **D**) $\frac{Q^2}{6\pi\varepsilon_0 a}$ **E**) $\frac{9Q^2}{16\pi\varepsilon_0 a}$

9

Two metal spheres in the figure are separated by a distance that is much greater than their radii. They are to be connected by a conducting wire of total resistance R. The sphere of radius $r_2 = a$ is uncharged and the sphere of radius $r_1 = 2a$ has a total charge of q = +Q on it.

Find the current through the wire immediately after the switch S is closed.

10

The uniform magnetic field inside the circular conducting wire of radius $r = 0.5 \ (m)$ is directed into the page plane and varies with time as $B(t) = at^2 + b \ (T)$ where $a = 2.0 \left(\frac{T}{s^2}\right)$ and b = 4.0(T) and time is in second. $\pi = 3$

How much electromotive force induce in the circuit $|\varepsilon|$ at t = 1.0(s) in Volts?

A) 3.0 **B**) 48 **C**) 360 **D**) 768 **E**) 120

11

The uniform magnetic field inside the circular conducting wire of initial radius of r = a is directed into the page plane and is given as B = 4.0 (*T*). The radius of the circle decreses at a constant rate of $\frac{dr}{dt} = -0.25 \left(\frac{m}{s}\right)$. Wire is always in circular shape.

Find the electric field induced at a point at a distance 2a from the centre of the circle at t = 0(s) in SI units?

A) 0.5 B) 1.0 C) 0.4 D) 0.3 E) 0.6

A closed loop carrying a constant current I = 2.0(A) is in a uniform magnetic field given by $\vec{B} = 2\hat{i} - \hat{j} + 2\hat{k}$ as shown in the figure. a = 0.5 (*m*) Find the potential energy of the magnetic dipole in Joules.

A) 1	B) 8	C) 24	D) 36	E) 4

An infinite sheet of current in z = 0 plane has uniform current density $\vec{J}_s = J_s \hat{\iota} \left(\frac{A}{m}\right)$. A right triangle current loop is placed parallel to the current sheet so that the right corner is on the z axis as shown in the figure.

Find the magnitude of the force acting on AB segment of the loop due to the current sheet for $J_s = 5.0 \left(\frac{A}{m}\right)$, I = 1.0 (A) and a = 2.0 (m).

D) $30\mu_0$

Ε) 4μ₀

B) $20\mu_0$ **C)** $2\mu_0$

Find the magnitude of the torque acting on the current e loop due to the current sheet for I = 2.0 (A), $J_s = 2.0$ $\left(\frac{A}{m}\right)$ and a = 1.0 (m)

An infinite sheet of current in z = 0 plane has uniform current density

sheet so that the right corner is on the z axis as shown in the figure.

 $\vec{J}_s = J_s \hat{\iota} \left(\frac{A}{m}\right)$. A right triangle current loop is placed parallel to the current

A) μ_0 **B)** $40\mu_0$ **C)** $45\mu_0$ **D)** $10\mu_0$ **E)** $12.5\mu_0$

15

A semicircular conductor of radius R = 1.0 (m) is rotated about the axis AC at a constant rate of $\omega = 60$ (rad/s) angular velocity. A uniform magnetic field of magnitude B = 2 (T) fills the entire region below the axis and is directed out of the page. Calculate the maximum value of the emf induced between the ends of the conductor in Volts. ($\pi = 3$)

A) 180 **B**) 120 **C**) 75 **D**) 90 **E**) 135

16

The magnetic flux through a coil changes over time as shown in the figure. The time rate of current flowing the coil is $\frac{dI}{dt} = 3 \left(\frac{A}{s}\right)$. Which of the following is the inductance of the coil in Henry? Where $\Phi_0 = 2.0 \ (Tm^2)$.

A) 1 B) 1.5 C) 2 D) 3 E) 2.5

13

Α) 5μ₀

14

A truncated conical surface of radius $r_1 = 5.0 \ (m)$, $r_2 = 3.0 \ (m)$ and height $h = 5.0 \ (m)$ is placed in a uniform electric field $\vec{E} = 2.0 \ \hat{\iota}(\frac{N}{c})$. Find the electric flux through the side surface of the cone in SI units. $(\pi = 3)$

18

The voltage across a parallel-plate capacitor with area $A = 2.0 \text{ (cm}^2)$ and separation d = 0.05 (cm) varies with time t as $V(t) = 5.0 \ln(2t)$ (Volt). Find the displacement current between the plates at t = 2.0 (s).

A) ε_0 **B**) $\frac{3}{2}\varepsilon_0$ **C**) $5\varepsilon_0$ **D**) $2\varepsilon_0$ **E**) $4\varepsilon_0$

19

As shown in the figure, a very long cylindrical rod with radius R = 3.0 (*m*) is carrying a nonuniform current density $J = \alpha r$. Where *r* is the radial distance and α is a positive constant. If the magnitude of magnetic field is B = 0.5 (*T*) at $r = \frac{3}{2}R$, what is the constant α in SI units? $\pi = 3$

A)
$$\frac{1}{4\mu_0}$$
 B) $\frac{1}{2\mu_0}$ **C**) $\frac{3}{4\mu_0}$ **D**) $\frac{3}{2\mu_0}$ **E**) $\frac{3}{\mu_0}$

20

As shown in the figure, a very long cylindrical rod with radius $R = 3.0 \ (m)$ is carrying a nonuniform current density $J = \frac{r}{\mu_0} \ (\frac{A}{m^2})$. Where *r* is the radial distance and α is a positive constant. Find the magnitude of magnetic field at r = R/2 in SI units?

← Ĵ

A) $\frac{3}{4}$ **B**) $\frac{1}{3}$ **C**) $\frac{4}{3}$ **D**) 3 **E**) $\frac{1}{12}$