RECITATION 4

1) A 200 N block is pushed up a frictionless, $30^{\circ}, 3$ m inclined plane by a force F parallel to the inclined plane. The speed of the block at the bottom of the inclined plane is $0.5 \mathrm{~m} / \mathrm{s}$ and $4 \mathrm{~m} / \mathrm{s}$ at the top. Draw the free body diagram and find;

a) The work done by the force F and the magnitude of the force F,
b) If the frictional coefficient between the block and the inclined plane surface is 0.15 , the speed of the block at the top of the inclined plane under the same force. (Use Work-Energy Theorem)
2) A spring with spring constant $k=200 \mathrm{~N} / \mathrm{m}$ is used as a launcher for a small block whose mass is $10 g$. The block is placed against the compressed spring in a horizontal arrangement on a smooth horizontal surface. The spring, with the block, is compressed 5 cm and then released.
a) Find the speed of the block just as it leaves the spring,
b) The block encounters a rough surface as it leaves the spring. How much work does friction do in bringing the block to an eventual stop?
c) The block slides a distance of 3.5 m before stopping. What is the coefficient of kinetic friction between the block and surface?
3) A particle of mass m moves in the $x y$ plane under the action of force $\vec{F}=(4 \hat{i}-2 \hat{j}) N$. Calculate the work done by the force as the particle moves in $O A, A B$ and $B O$.

4) A force $\vec{F}=(4 x \hat{i}+3 y \hat{j}) N$ acts on a particle as the object moves in the x direction from the origin to $x=5 \mathrm{~m}$. Find the work done on the object by the force.
5) The restoring force for a spring that does not obey Hooke's law is $F(x)=-\alpha x-\beta x^{2}$, where $\alpha=60 \mathrm{~N} / \mathrm{m}$, $\beta=18 \mathrm{~N} / \mathrm{m}^{2}$ and the mass of spring can be negligible. Find the potential energy difference of the spring $U(x)($ at $x=0 ; U=0)$.
6) A block slides down a curved frictionless track and then up an inclined plane as in figure. The coefficient of kinetic friction between block and incline is μ_{k}. Use Work-Energy Theorem to find the maximum height reached by the block in terms of h, θ, μ_{k}.

