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Experiment 1 

THE ANALYSIS OF AN EXPERIMENT 

 

Purpose: To learn how to analyze experimental data and draw graphics, prediction of the results of similar 

experiments from the mathematical equations which are obtained from analysis, to learn how to make 

experimental error calculations. 

Equipment and materials: Scientific calculator, pencil, eraser, ruler, graph paper. 

 

1. Information 

 

The heart of any experiment is making observations and measurements. Accurate measurement requires 

appropriate tools. When measuring a tabletop, we could use a meter stick to produce a suitable 

measurement. The meter stick has graduations small enough to attain a measurement to within a 

millimeter. One can make a measurement accurate to within a thousandth of a meter. This is good 

accuracy if the table is roughly a meter or longer. To use a meter stick to measure the thickness of a pencil 

would be inappropriate. Assuming a pencil is roughly 5 mm in diameter; one would want a tool that could 

give measurements accurate to a fraction of a millimeter. The vernier and micrometer calipers were 

developed to perform such measurements. 

 

All measurements are subject to uncertainty; no matter how precise the instrument that is used or how 

careful the experiment is done. Therefore it is important to evaluate in some way the magnitude of the 

uncertainty in a measurement, and if possible, minimize that uncertainty. 

Consider the following standard metric ruler (Figure 1).  

 

 

 

 

 

 

Figure 1. Demonstration of the uncertainty of the ruler. 

 

The ruler is incremented in units of centimeters (cm). The smallest scale division is a tenth of a centimeter 

or 1 mm. Therefore, the uncertainty  1 mm. In the example above, the length of the object would be 

stated as 15 1 mm. 

 

The vernier caliper is an instrument that allows you measure lengths much more accurate than the metric 

ruler. The smallest increment in the vernier caliper you will be using is 0,1 mm (Figure 2). Thus, the length 

of the object in Figure 2 can be stated as 10,5 0,1 mm. 

 

 

 

 

 

 

 

Figure 2. Demonstration of the uncertainty of the vernier caliper. 
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a=5,25 cm and b=2,1 cm 
 
a+b=7,35 cm 
      ~7,4  cm  

The micrometer caliper has a linear scale engraved on its sleeve and a circular scale engraved on what is 

properly called the thimble. Measurements made with a micrometer caliper can be estimated to hundreds 

of a millimeter. Therefore, the width of the object in Figure 3 can be stated as 13,77 0,01 mm. 

 

 

 

 

 
 
 
 
 

Figure 3. Demonstration of the uncertainty of the micrometer caliper. 
 
 

Significant Figures 
 
The number of significant figures used in stating a measured value indicates the precision. The number of 
significant figures in a number is defined as follows: 
 

 The leftmost nonzero digit is the most significant digit. 

 If there is no decimal point, the rightmost nonzero digit is the least significant digit. 

 If there is a decimal point, the rightmost digit is the least significant digit, even if it is a zero. 

 The number of significant figures is the number of digits from the least significant digit to the most 
significant digit, inclusive. 
 
 

Examples: 
 

Table 1 

Digit 
Scientific 

demonstration 
Significant figures 

6,23  3 

9,1  2 

0,00246 2,46x10-3 3 

0,00000001 1 10-8 1 

0,000000010 1,0 10-8 2 

 
 
 
Arithmetic with Significant Figures 
 
SUMS AND DIFFERENCES: The least significant digit of the 
result is in the same column relative to the decimal point as 
the least significant digit of the number entering into the 
sum or difference which has its least significant digit farthest 
to the left. 
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a=16,2 cm  and b=4,4 cm   (2 significant figures) 
 
axb=71,28 cm2 
      =71 cm2  ( 2 significant figures) 

PRODUCTS AND QUOTIENTS: The number of significant figures in a product or quotient is the same as the 
number of significant figures in the factor with the fewest significant figures. 

 
 
UNITS AND DIMENSIONS 
 
By international agreement a small number of physical quantities such as length, time, mass etc. are chosen 
and assigned standards. These quantities are called base quantities and their units are base units. All other 
physical quantities are expressed in terms of these base quantities. The units of these dependent quantities 
are called derived units. 
 
The units by which we now measure physical quantities is called the S.I. (System International) established 
in 1960. Within this system, the most commonly used set of units in physics are M.K.S. (Metres, Kilograms, 
Seconds) system: 
 

Table 2 

Physical Quantity CGS Unit System MKS Unit System 

 Dimension Unit Unit 

 Name 
Dimension 
Symbol 

Unit 
Symbol 

Name 
Unit 

Symbol 
Name 

Unit 
Symbol 

  B
as

e 
Q

u
an

ti
ti

es
 Length [L] l centimeter cm meter m 

Mass [M] m gram g kilogram kg 

Time [T] t second s second s 

    
    

    
    

    
    

   D
er

iv
ed

 Q
u

an
ti

ti
es

 

Area [L2] S, A 
square 
centimeter 

cm2 square meter m2 

Volume [L3] V cubic centimeter cm3 cubic meter m3 

Velocity [L]/[T] υ 
centimeter/ 
second 

cm/s meter/second m/s 

Acceleration [L]/[T2] a 
centimeter/ 
square second 

cm/s2 
meter/  
square second 

m/s2 

Force [M]x[L]/[T2] F Dyne dyn=g.cm/s2 Newton N=kg.m/s2 

Energy [M]x[L2]/[T2] E Erg Erg= g.cm2/s2 Joule J= kg.m2/s2 
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Powers of Ten 
 
In addition to the basic SI units of meter, kilogram, and second, we can also use other units, such as 
millimeters and nanoseconds, where the prefixes milli- and nano- denote multipliers of the basic units 
based on various powers of ten. Prefixes for the various powers of ten and their abbreviations are listed in 
Table 3. 
 

Table 3 
 

Prefix Abbreviation Power Prefix Abbreviation Power 
Deka dek 101 deci d 10-1 
Hecto h 102 centi c 10-2 
Kilo k 103 milli m 10-3 

Mega M 106 micro  10-6 

Giga G 109 nano n 10-9 
Tera T 1012 pico p 10-12 
Peta P 1015 femto f 10-15 
Exa E 1018 atto a 10-18 

 
 

 
 
2. Experiment 

 
 

Figure 4 
 
 

In Table 4, the results of an experiment are presented. The experiment is designed to investigate the pour 
out time of water through a hole in the bottom of containers. As you would expect, this time depends on 
the size of the hole and the amount of water in the container. To find the dependence of the pour out time 
with respect to the hole sizes of containers, we used four holes in different diameters. Then, to find the 
dependence of the pour out time with respect to the amount of water, containers were filled with water in 
different heights. 
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Table 4 
 

Hole diameter  
d (cm) 

Times to empty 
t (s) 

tort(s) 

1.5 
72.8 

 73.2 
73.1 

2.0 
41.7 

 41.3 
41.4 

3.0 
18.6 

 18.3 
18.2 

5.0 
6.6 

 7.0 
6.9 

 
Analysis 
 
All the information we will use is in Table 4, but a graphical presentation will enable us to make predictions 
and will greatly facilitate the discovery of mathematical relationships. First, plot the time versus the 
diameter of the opening for a constant height, for example 30 cm. It is customary to mark the independent 
variable (in this case, the diameter d) on the horizontal axis and the dependent variable (here the time t) on 
the vertical axis. To get maximum accuracy on your plot, you will wish the curve to extend across the whole 
sheet of paper. Choose your scales on the two axes accordingly, without making them awkward to read. 

 
Graphic 1 
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Connect the points by a smooth curve. Is there just one way of doing this? From your curve, how accurately 
can you predict the time it would take to empty the same container if the diameter of the opening was 4 
cm? and 8 cm? 
 

d=4 cm ;  t =……..                                     d=8 cm ;  t =…….. 

 
Although you can use the curve to interpolate between your measurements and roughly extrapolate 
beyond them, you have not yet found an algebraic expression for the relationship between t and d. From 
your graph you can see that t decreases rather rapidly with d; this suggests some inverse relationship. 
Furthermore, you may argue that the time of flow should be simply related to the area of the opening, 
since the larger the area of the opening, the more water will flow through it in the same time. This suggests 
trying a plot of t versus 1/d2. 
 

Table 5 
 

        n=1        n=2        n=3 

t (s) d (cm) 1/d (cm-1) 1/d2 (cm-2) 1/d3 (cm-3) 

73,0 1.5 0,67 0,44 0,30 

41,5 2.0 0,50 0,25 0,13 

18,3 3.0 0,33 0,11 0,037 

6,8 5.0 0,20 0,040 0,0080 

 

 
 

Graphic 2 
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Experimental Errors 
 
All measured quantities contain inaccuracies. These inaccuracies complicate the problem of determining 
the true value of a quantity. Therefore, the object of experimental work must be to determine the best 
estimate of the true value of the quantity being measured, together with an indication of the reliability of 
the measurement. 
 
There are two main sources of experimental errors: Systematic errors and statistical errors. 
 
Systematic errors are associated with the particular instruments or technique used. They can result when 
an improperly calibrated instrument is used or when some unrealized influence perturbs the system in 
some definite way, thereby biasing the result of the measurement.  
 
No matter how carefully a measurement is made, it will possess some degree of variability. The errors that 
result from the lack of precise repeatability of a measurement are called Statistical errors. It is often 
possible to minimize statistical errors by judicious choice of measuring equipment and technique, but they 
can never be eliminated completely. 
 
Absolute Error 
 
In general, the result of any measurement of physical quantity must include both the value itself and its 
error. The result is usually quoted in the form 
 
 ±∆x = x0 – x 
 

where x0 is the best estimate of what we believe is a true value of the physical quantity and ∆x is the 
estimate of absolute error (uncertainty). ∆x indicates the reliability of the measurement, but the quality of 
the measurement also depends on the value of x0.  
 
Fractional Error 
 

Fractional error is defined as 
o

x

x


 .  

 

Fractional error can be also represented in percentile form: 100
o

x

x


  


