RECITATION-1

1- Which of the equations below are dimensionally correct? (where v is velocity, x is position, a is acceleration, and t is time)
a) $x_{s}=x_{i}+v_{x i} t+\frac{1}{2} a t^{2}$
b) $v_{x s}^{2}=v_{x i}^{2}-2 a\left(x_{s}-x_{i}\right)$
(1)

$$
\text { a) } \begin{aligned}
& x_{s}=X_{i}+v_{x i} t+\frac{1}{2} a t^{2} \\
& {[L] }=[L]+\frac{[L]}{[T]}[T]+\frac{[L]}{[T]^{2}}[T]^{2} \\
& {[L] }=[L] \quad \text { TRUE } \\
& \text { b) } v_{x s}^{2}=v_{x i}^{2}-2 a\left(x_{s}-x_{i}\right) \\
& \frac{[L]^{2}}{[T]^{2}}=\frac{[L]^{2}}{[T]^{2}}-\frac{[L]}{[T]^{2}}[L] \\
& \frac{[L]^{2}}{[T]^{2}}=\frac{[L]^{2}}{[T]^{2}} \text { TRUE }
\end{aligned}
$$

2-
a) By using $E=m c^{2}$ and $E=\frac{h c}{\lambda}$ expressions, find the dimension of the Planck contant and SI units. (In here, E is the energy, c is the speed of light, λ is wavelengt, m is mass and h is the Planck constant)

$$
\begin{aligned}
& m c^{2}=\frac{h c}{\lambda} \rightarrow h=m c \lambda \\
& m \text { (mass) : }[M] ; \quad c \text { (speed of light): } \frac{x}{t}:[L] /[T]
\end{aligned}
$$

λ (wavelenght) : [L]

$$
\begin{aligned}
& {[h]=[M][L][T]^{-1}[L]} \\
& {[h]=[M][L]^{2}[T]^{-1} \rightarrow s I \rightarrow \mathrm{~kg} \mathrm{M}^{2} \mathrm{~s}^{-1}}
\end{aligned}
$$

b) The period of a simple pendulum of length " l " is given by $T=2 \pi \sqrt{\frac{l}{g}}$, where g is the accelaration due to the gravity. Show that the equation is dimensionally correct. Find its unit in SI unit system.

$$
[T]=\sqrt{\frac{[L]}{\frac{[L]}{[T]^{2}}}}=\sqrt{[T]^{2}}=[T]
$$

In SI unit system, its unit is second (s)
3- In a rigid body, the distance between two adjacent atoms or molecules is assumed to be approximately equal to 2 times the radius of the volume of a molecule or atom.
Find the distance between two adjacent atoms for;
a) Iron and
b) Sodium.
(The densities of iron and sodium are given as $7,87 \mathrm{~g} / \mathrm{cm}^{3}$ and $1,013 \mathrm{~g} / \mathrm{cm}^{3}$, respectively. The atomic masses are also $9,27 \times 10^{-26} \mathrm{~kg}$ and $3,82 \times 10^{-26} \mathrm{~kg}$, respectively.)
a) Volume of an iron (Fe) atom

$$
\begin{aligned}
& V_{\mathrm{Fe}}=\frac{4}{3} \pi r_{\mathrm{Fe}}^{3}=\frac{m_{\mathrm{Fe}}}{\rho_{\mathrm{Fe}}} \text { ve yariçapl } r_{\mathrm{Fe}}=\left(\frac{3 m_{\mathrm{Fe}}}{4 \pi \rho_{\mathrm{Fe}}}\right)^{1 / 3} \\
& r_{\mathrm{Fe}}=\left(\frac{3 \times 9,27 \times 10^{-26} \mathrm{~kg}}{4 \pi \times 7,87 \frac{10^{-3}}{10^{-6}} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}\right)^{1 / 3}=1,41 \times 10^{-10} \mathrm{~m}
\end{aligned}
$$

Distance between two iron atom:

$$
d_{\mathrm{Fe}}=2 \times r_{\mathrm{Fe}}=2,82 \times 10^{-10} \mathrm{~m} \quad \text { bulunur. }
$$

b) Distance between two sodium (Na) atom:

$$
\begin{aligned}
d_{N_{a}}=2 \times r_{N a} & =2\left(\frac{3 \mathrm{mNa}}{4 \pi \rho_{N a}}\right)^{1 / 3} \\
& =2\left(\frac{3 \times 3,82 \times 10^{-26} \mathrm{~kg}}{4 \pi \times 1,013 \times \frac{10^{-3}}{10^{-6}} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}\right)^{1 / 3}=4,16 \times 10^{-10} \mathrm{~m} .
\end{aligned}
$$

4- Find the equivalent values in SI units :
$1,0 \mathrm{~g} / \mathrm{cm}^{3}, 980,0 \mathrm{~cm} / \mathrm{s}^{2}, 9,1 \times 10^{-37} \mathrm{~g}, 1 \mu \mathrm{~m}, 1,0 \mathrm{~ms}$ and $1,0 \mathrm{ft}$.

$$
\begin{aligned}
& 1 \mathrm{~g} / \mathrm{cm}^{3}=1 \times \frac{10^{-3}}{10^{-6}} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=10^{3} \mathrm{~kg} / \mathrm{m}^{3} \\
& 980 \mathrm{~cm} / \mathrm{s}^{2}=9,8 \mathrm{~m} / \mathrm{s}^{2} \\
& 9,1 \times 10^{-27} \mathrm{~g}=9,1 \times 10^{-30} \mathrm{~kg} \\
& 1 \mu \mathrm{~m}=10^{-6} \mathrm{~m} \\
& 1 \mathrm{~ms}=10^{-3} \mathrm{~s} \\
& 1 \mathrm{ft}=0,3048 \mathrm{~m}
\end{aligned}
$$

5- A novice golfer on the green takes three strokes to sink the ball. The successive displacements are 4.00 m to the north, 2.00 m south-east, and 1.00 m west of south. Starting at the same initial point, an expert golfer could make the hole in what single displacement?

$$
\begin{aligned}
& \vec{d}_{1}=4 \vec{j}(\mathrm{~m}) \\
& \vec{d}_{2}=2 \cos 45^{\circ} \vec{i}-2 \sin 45^{\circ} \vec{j} \\
& \vec{d}_{3}=-1 \cdot \cos 45 \vec{i}-1 \cdot \sin 45^{\circ} \vec{j}
\end{aligned}
$$

$$
\vec{d}=\vec{d}_{1}+\vec{d}_{2}+\vec{d}_{3}=\frac{\sqrt{2}}{2} \vec{i}+\left(4-\frac{3}{2} \sqrt{2}\right) \vec{j}
$$

$$
|\vec{d}|=\sqrt{\frac{2}{4}+16-12 \sqrt{2}+\frac{9}{2}} \cong 2 \mathrm{~m}
$$

$$
\tan \theta=\frac{4-\frac{3}{2} \sqrt{2}}{\frac{\sqrt{2}}{2}}=2,69 \quad \theta=69,6^{\circ}
$$

6- Two vectors are given as: $\vec{a}=4 \hat{\imath}-3 \hat{\jmath}+\hat{k}$ and $\vec{b}=-\hat{\imath}+\hat{\jmath}+4 \hat{k}$. Find
a) $\vec{a}+\vec{b}$ vector and its magnitude
b) $\vec{a}-\vec{b}$ vector and its magnitude
c) Find a vector \vec{c} that $\vec{a}-\vec{b}+\vec{c}=0$
a) $\vec{c}=\vec{a}+\vec{b}=(4 \hat{\imath}-3 \hat{\jmath}+\hat{k})+(-\hat{\imath}+1 \hat{\jmath}+4 \hat{k})=3 \hat{\imath}-2 \hat{\jmath}+5 \hat{k}$

$$
|\vec{c}|=\sqrt{3^{2}+\left(-2^{2}\right)+5^{2}}=\sqrt{38}
$$

b) $\vec{c}=\vec{a}-\vec{b}=(4 \hat{\imath}-3 \hat{\jmath}+\hat{k})-(-\hat{\imath}+1 \hat{\jmath}+4 \hat{k})=5 \hat{\imath}-4 \hat{\jmath}-3 \hat{k}$

$$
|\vec{c}|=\sqrt{5^{2}+(-4)^{2}+(-3)^{2}}=\sqrt{50}
$$

c)

$$
\begin{aligned}
& \vec{a}+\vec{b}+\vec{c}=0 \\
& (4 \hat{\imath}-3 \hat{\jmath}+\hat{k})-(-\hat{\imath}+1 \hat{\jmath}+4 \hat{k})+\left(c_{x} \hat{\imath}+c_{y} \hat{\jmath}+c_{z} \hat{k}\right)=(0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}) \\
& c_{x}=-5, \quad c_{y}=4, \quad c_{z}=3
\end{aligned}
$$

7- \mathbf{A}, \mathbf{B} and \mathbf{C} are defined as vectors and their components are given as: $A_{x}=3, A_{y}=-2$ and $A_{z}=2, B_{x}=0, B_{y}=0, B_{z}=4, C_{x}=2, C_{y}=-3$ adn $C_{z}=0$. Find
a) $\vec{A} \cdot(\vec{B}+\vec{C})$

$$
\begin{aligned}
& \vec{B}+\vec{C}=2 \hat{i}-3 \hat{j}+4 \hat{k} \\
& \vec{A} \cdot(\vec{B}+\vec{C})=(3 \hat{i}-2 \hat{j}+2 \hat{k}) \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k}) \\
& \vec{A} \cdot(\vec{B}+\hat{c})=6+6+8=20
\end{aligned}
$$

b) $\vec{A} x(\vec{B}+\vec{C})$

$$
\begin{aligned}
\vec{A} \times(\vec{B}+\hat{C})=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & -2 & 2 \\
2 & -3 & 4
\end{array}\right|=\hat{i}(-8+6)-\hat{j}(12-4)+\hat{k}(-9+4) \\
=-2 \hat{i}-8 \hat{j}-5 \hat{k}
\end{aligned}
$$

c) $\vec{A} \cdot(\vec{B} \times \vec{C})$

$$
\begin{aligned}
& \vec{B} \times \vec{C}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
0 & 0 & 4 \\
2 & -3 & 0
\end{array}\right|=\hat{i}(0+12)-\hat{j}(0-8)+\hat{k}(0-0) \\
& \vec{A} \cdot(\vec{B} \times \hat{C})=(3 \hat{i}-2 \hat{j}+2 \hat{k}) \cdot(12 \hat{j}
\end{aligned}
$$

d) $\vec{A} x(\vec{B} x \vec{C})$

$$
\begin{aligned}
\vec{A} \times(\vec{B} \times \vec{C})=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & -2 & 2 \\
12 & 8 & 0
\end{array}\right|=\hat{i}(0-16)-\hat{j}(0-24)+\hat{k}(24+24) \\
=-16 \hat{i}+24 \hat{j}+48 \hat{k}
\end{aligned}
$$

8- Three displacement vectors of a croquet ball are shown in Figure, where $|A|=20.0$ units, $|B|=40.0$ units, and $|C|=30.0$ units. Find (a) the resultant in unitvector notation and (b) the magnitude and direction of the resultant displacement.
(a) $R_{x}=40.0 \cos 45.0^{\circ}+30.0 \cos 45.0^{\circ}=49.5$

$$
R_{y}=40.0 \sin 45.0^{\circ}-30.0 \sin 45.0^{\circ}+20.0=27.1
$$

$$
\mathrm{R}=49.5 \hat{\mathbf{i}}+27.1 \hat{\mathbf{j}}
$$

(b)

$$
\begin{aligned}
|\mathbf{R}| & =\sqrt{(49.5)^{2}+(27.1)^{2}}=56.4 \\
\theta & =\tan ^{-1}\left(\frac{27.1}{49.5}\right)=28.7^{\circ}
\end{aligned}
$$

9- A person going for a walk and follows the path: First walks through northwest 4 km which makes 20 degree with the north. Then, 5 km in the way of north and lastly 3 km through the east. At the end of the walk, what is the person's resultant displacement measured from the starting point?

10- A proton with velocity $\vec{v}=1,0.10^{6} \hat{\imath}+2,0.10^{6} \hat{\jmath}-2,0.10^{6} \hat{k}$ in a magnetic filed which is given by $\vec{B}=0,2 \hat{\imath}-0,3 \hat{\jmath}+0,4 \hat{k}$. Find the force on proton using $\vec{F}=q \vec{v} \times \vec{B}$ expression. $\left(q=1,6 \times 10^{-19} \mathrm{C}\right)$.
a)

$$
\begin{gathered}
\vec{V}=1,0 \cdot 10^{6} \hat{i}(-n /)+2,0 \cdot 10^{6} \hat{j}(n / s)-2,0 \cdot 10^{6} \hat{k}(\mathrm{nl}) \\
\vec{B}=0,2 \hat{i}(T)-0,3 \hat{j}(\tau)+0,4 \hat{k}(\tau) \\
\vec{F}=9 \vec{V} \times \vec{B}
\end{gathered}
$$

$$
\vec{V} \times \vec{B}=(0,2 \hat{i}-0,8 \hat{J}-0,7 \hat{k}) \cdot 10^{6}
$$

$$
\vec{F}=1,6 \cdot 10^{-19}(0,2 \hat{i}-0,8 \hat{\jmath}-0,7 \hat{k}) \cdot 10^{6}
$$

$$
\vec{F}=0,32 \cdot 10^{-13} \hat{i}-1,28 \cdot 10^{-13} \hat{\jmath}-1,12 \cdot \hat{k} \cdot 10^{-13}(\mathrm{~N})
$$

$$
\vec{F}=(32 \hat{\imath}-128 \hat{J}-112 \hat{k}) \cdot 10^{-15}(\mathrm{~N})
$$

