RECITATION-4

Work, Kinetic Energy,Potential Energy and Conservation of Energy

1) A 200 N block is pushed up a frictionless, $30^{\circ}, 3$ m inclined plane by a force F parallel to the inclined plane. The speed of the block at the bottom of the inclined plane is $0.5 \mathrm{~m} / \mathrm{s}$ and $4 \mathrm{~m} / \mathrm{s}$ at the top. Draw the free body diagram and find;

a) The work done by the force F and the magnitude of the force F,
b) If the frictional coefficient between the block and the inclined plane surface is 0.15 , the speed of the block at the top of the inclined plane under the same force. (Use Work-Energy Theorem)

a) $\vec{F}=F_{x} \hat{i}+F_{y} \hat{j}$
$\Delta E=E_{S}-E i$
$E_{i}=\frac{1}{2} m v i^{2}$
$\Delta E=m g h+\frac{1}{2} m v_{s}^{2}-\frac{1}{2} m v_{i}^{2}$
$E_{s}=m g h+\frac{1}{2} m v_{s}^{2}$

$$
\Delta E=200 \cdot 1,5+\frac{1}{2} \cdot 20 \cdot 4^{2}-\frac{1}{2} \cdot 20 \cdot(0,5)^{2}
$$

$\Delta E=457,5 \mathrm{~J}=\omega_{F}$

$$
\begin{aligned}
W_{F}=\vec{F} \cdot \vec{d} & =(F x \hat{i}+F y \hat{j}) \cdot d \hat{i}=F x \cdot d=F \cos 30^{\circ} \cdot d \\
457,5 & =F \cdot \cos 30^{\circ} \cdot 3
\end{aligned}
$$

$$
F=176 \mathrm{~N}
$$

(1) b) $\quad \sum F y=0$

$$
\begin{array}{ll}
N-F_{y}-m g \cos 30^{\circ}=0 & f_{k}=\mu_{k} N \\
N=m g \cos 30^{\circ}+F \cdot \sin 30^{\circ} & f_{k}=0,15 \cdot 261,2 \\
N=200 \cdot \cos 30^{\circ}+176 \cdot \sin 30^{\circ} & f_{k}=39,18 \mathrm{~N} \\
N=261,2 \mathrm{~N} &
\end{array}
$$

$$
w_{F}=457,5 \mathrm{~J} \quad \begin{aligned}
w_{f_{k}} & =\vec{f}_{k} \cdot \vec{d} \\
w_{f_{k}} & =f_{k} d \cos 180^{\circ} \\
w_{f_{k}} & =-39,18.3 \cos 180^{\circ} \\
w_{f_{k}} & =-117,54 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
\Delta E=W_{F}+W_{f k} & =\Delta K+\Delta u \\
W_{F}+W_{f k} & =\left(\frac{1}{2} m v^{\prime 2}-\frac{1}{2} m v_{i}^{2}\right)+m g h \\
457,5+(-117,54) & =\frac{1}{2} \cdot 20 \cdot v^{\prime 2}-\frac{1}{2} \cdot 20 \cdot(0,5)^{2}+200 \cdot 1,5 \\
v^{\prime} & =2,06 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2) A spring with spring constant $k=200 \mathrm{~N} / \mathrm{m}$ is used as a launcher for a small block whose mass is 10 g . The block is placed against the compressed spring in a horizontal arrangement on a smooth horizontal surface. The spring, with the block, is compressed 5 cm and then released.
a) Find the speed of the block just as it leaves the spring,
b) The block encounters a rough surface as it leaves the spring. How much work does friction do in bringing the block to an eventual stop?
c) The block slides a distance of 3.5 m before stopping. What is the coefficient of kinetic friction between the block and surface?

(2) b) $\quad U_{\text {Total }}=\Delta K$

$$
\begin{gathered}
w_{\text {Total }}=\omega_{f k}+w_{g}+w_{N}=\Delta K \\
w_{f k}=\Delta K=k_{0}^{\prime}-K \\
w_{f k}=\frac{1}{2} m\left(v^{\prime 2}-v^{2}\right) \\
\omega_{f u}=-\frac{1}{2} 10 \cdot 10^{-3}(7,1)^{2} \\
\omega_{f u}=-0,25 \mathrm{~J}
\end{gathered}
$$

c) $\omega_{f k}=\vec{f}_{k} \cdot \vec{d}=f_{k} d \cdot \cos 180^{\circ}=-f_{k} d=-\mu_{k} N d=-\mu_{k} m g d$ $-0,25=-\mu_{k} \cdot 10 \cdot 10^{-3} \cdot 9,8 \cdot 3,5$

$$
\mu_{k}=0,73
$$

3) A particle of mass m moves in the $x y$ plane under the action of force $\vec{F}=(4 \hat{i}-2 \hat{j}) N$. Calculate the work done by the force as the particle moves in $O A, A B /$ and $B O$.

$$
W=\vec{F} \cdot \vec{r}
$$

$O A: \quad \vec{r}=(3 \hat{i}) m$

$$
\begin{aligned}
& w=(4 \hat{\imath}-2 \hat{j}) \cdot(3 \hat{\imath}) J \\
& w=12 J
\end{aligned}
$$

$A B=$

$$
\left.\begin{array}{ll}
\vec{r}=(4 \hat{j}) m & B O: \vec{r} \\
W=(4 \hat{i}-2 \hat{j}) \cdot(4 \hat{j}) \mathrm{j}-4 \hat{j}) m \\
W & W=-8 J
\end{array} r \hat{\imath}-2 \hat{j}\right) \cdot(-3 \hat{i}-4 \hat{j}) J .
$$

4) A force $\vec{F}=(4 x \hat{i}+3 y \hat{j}) N$ acts on a particle as the object moves in the x direction from the origin to $x=5 \mathrm{~m}$. Find the work done on the object by the force.

$$
\begin{aligned}
& W=\int_{x_{i}}^{x_{5}} \vec{F} \cdot d \vec{r} \\
& W=\int_{0}^{5}(4 x \hat{i}+3 y \hat{j}) \cdot d x \hat{i} \\
& W=\int_{0}^{5} 4 x d x=\left.4 \frac{x^{2}}{2}\right|_{0} ^{5} \\
& W=50 J
\end{aligned}
$$

5) The restoring force for a spring that does not obey Hooke's law is $F(x)=-\alpha x-\beta x^{2}$, where $\alpha=60 \mathrm{~N} / \mathrm{m}$, $\beta=18 \mathrm{~N} / \mathrm{m}^{2}$ and the mass of spring can be negligible. Find the potential energy difference of the spring $U(x)$. (at $x=0 ; U=0)$

$$
\begin{aligned}
&-\frac{d u}{d x}= F_{x}=-\alpha x-\beta x^{2} \\
& u= \int\left(\alpha x+\beta x^{2}\right) d x=\alpha \frac{x^{2}}{2}+\beta \frac{x^{3}}{3}+c \\
& x=0 \quad u=0 \Rightarrow \quad c=0 \\
& u=30 x^{2}+6 x^{3} \quad \text { (joule) }
\end{aligned}
$$

6) A block slides down a curved frictionless track and then up an inclined plane as in figure. The coefficient of kinetic friction between block and incline is μ_{k}. Use Work-Energy Theorem to find the maximum height ht reached by the block in terms of h, θ, μ_{k}.

$$
\begin{aligned}
m g y_{\max } & =m g h-\mu_{k} m g d \cos \theta \\
m g y_{\max } & =m g h-\mu_{k} m g y_{\max } \cot \theta \\
y_{\max } & =\frac{h}{1+\mu_{k} \cot \theta}
\end{aligned}
$$

7) A 50 kg trunk is pushed 6 m at constant speed up a 30° incline by a constant horizontal force (F). The coefficient of kinetic friction between the trunk and the incline is 0.2 . What is the work done by;
a) The applied horizontal force
b) The force of friction
c) The force of gravity
d The normal force exerted by the incline

e) Determine the total work done on the trunk.

$$
\sum \vec{F}=m \vec{a} \quad v=\text { constant }, a=0
$$

$$
\sum \vec{F}=0
$$

a)

$$
\begin{align*}
\Sigma F_{x}= & F_{\cos 30^{\circ}-f_{k}-m g \sin 30^{\circ}=0} \\
& F \cos 30^{\circ}-\mu_{k} \cdot n-m g \sin 30^{\circ}=0 \tag{1}
\end{align*}
$$

$$
\begin{gather*}
\sum F y=n-F \sin 30^{\circ}-m g \cos 30^{\circ}=0 \\
n=F \sin 30^{\circ}+m g \cos 30^{\circ} \tag{2}
\end{gather*}
$$

$$
\begin{gathered}
F \cos 30^{\circ}-\mu_{k}\left(F \sin 30^{\circ}+m g \cos 30^{\circ}\right)-m g \sin 30^{\circ}=0 \\
F\left(\cos 30^{\circ}-\mu_{k} \sin 30^{\circ}\right)=m g\left(\sin 30^{\circ}+\mu_{k} \cos 30^{\circ}\right) \\
F=\frac{m g\left(\sin 30^{\circ}+\mu_{k} \cos 30^{\circ}\right)}{\cos 30^{\circ}-\mu_{k} \sin 30^{\circ}} \\
F=\frac{50 \cdot 10\left(\sin 30^{\circ}+0,2 \cos 30^{\circ}\right)}{\cos 30^{\circ}-0,2 \cdot \sin 30^{\circ}} \\
F=439,4(N) \\
W_{F}=\vec{F} \cdot \vec{d}=F d \cos 30^{\circ}=439,4.6 \cos 30^{\circ} \\
W_{F}=2283,2(\mathrm{~J})
\end{gathered}
$$

b) $W_{f k}=\vec{f}_{k} \cdot \vec{d}=f_{k} d \cos 180^{\circ}$

$$
\begin{aligned}
& W_{f k}=-\mu_{k} n d \quad(2) \rightarrow n=F \sin 30^{\circ}+m g \cos 30^{\circ} \\
& W_{f k}=-\mu\left(F \sin 30^{\circ}+m g \cos 30^{\circ}\right) d \\
& W_{f k}=-0,2\left(439,4 \sin 30^{\circ}+50 \cdot 10 \cdot \cos 30^{\circ}\right) \cdot 6 \\
& W_{f k}=-783,2 \text { (J) }
\end{aligned}
$$

c) $W_{g}=m \vec{g} \cdot \vec{d}=m g d \cos 240^{\circ}$

$$
W_{9}=50 \cdot 10 \cdot 6 \cdot \cos 240^{\circ}
$$

$$
W_{g}=-1500(\mathrm{~J})
$$

d) $W_{n}=\vec{n} \cdot \vec{d}=n d \cos 90^{\circ}$

$$
W_{n}=0
$$

e) $\sum W=W_{F}+W_{f k}+W_{g}+W_{n}$

$$
\sum W=2283,2-783,2-1500+0
$$

$$
\Sigma W=0
$$

8) A block of mass m is pushed at constant speed up an θ^{0} incline by a constant horizontal force (\mathbf{F}), from point O to point A through $I=I O A I$, as shown in Figure. The coefficient of kinetic friction between the block and the incline is changed with $\mu_{k}(x)=0.1 x$
a) Determine the work done by net force through IOAI
b) Draw a free-body diagram for the block and determine $F(x)$ force in terms of $\mathrm{m}, \mathrm{g}, \theta$ and x .
c) What is the work done by $\mathrm{F}(\mathrm{x})$ through IOAI in terms of $\mathrm{m}, \mathrm{g}, \theta$ and l.

a) $\quad \sum \vec{F}=m \vec{a}$

$$
\begin{aligned}
& \sum \vec{F}=0 \quad(v=\text { constant }, a=0) \\
& W W_{\Sigma \vec{F}}=0
\end{aligned}
$$

$$
\begin{aligned}
\sum F_{x}= & F(x)-f k-m g \sin \theta=0 \\
& F(x)=m g \sin \theta+\mu_{k} n \quad \mu_{k}=0,1 x \\
& F(x)=m g \sin \theta+0,1 n x \quad(1) \\
\sum F_{y}= & n-m g \cos \theta=0 \\
& n=m g \cos \theta \quad \text { (2) }
\end{aligned}
$$

Using Eqns. (2) and (1);

$$
F(x)=m g[\sin \theta+0,1 \cos \theta x]
$$

c) $W_{F}=\int_{0}^{l} F(x) d x$
$W_{F}=\int_{0}^{l} m g[\sin \theta+0,1 \cos \theta x] d x$
$W_{F}=\left[m g \sin \theta x+m g \cdot 0,1 \cos \theta \frac{x^{2}}{2}\right]_{0}^{l}$
$W_{F}=m g \sin \theta l+0,05 m g \cos \theta l^{2}$
$W_{F}=m g l[\sin \theta+0,05 \cos \theta \cdot l]$
9) A roller-coaster car is released from rest at the top of the first rise and then moves freely with negligible friction. The roller coaster shown in Figure has a circular loop of radius R in a vertical plane.
a) Find the required height of the incline in terms of R in order to avoid from dropping the car from the point B.
b) If $h=(7 / 2) R$ and $R=20 \mathrm{~m}$, find the speed, centripetal acceleration and tangential
 acceleration of the car at point C.

$$
\begin{aligned}
& \text { a) } E_{i}=E_{S} \\
& K_{A}+\sum u_{A}=K_{B}+\sum u_{B} \\
& m g h_{\text {min }}=\frac{1}{2} m v_{B_{\text {min }}^{2}}^{2}+2 m g R \\
& m g h_{\text {min }}=\frac{1}{2} m g R+2 m g R \\
& h_{\text {min }}=\frac{5}{2} R
\end{aligned}
$$

If $h \geq \frac{5}{2} R$, the roller-coaster will pass point B without falling.

At point B

$$
\begin{aligned}
& m g=m \frac{V_{B_{\text {min }}}^{2}}{R} \\
& v_{B_{\text {min }}}^{2}=g R
\end{aligned}
$$

min -
b) $\quad E_{A}=E_{c}$

$$
\begin{aligned}
& K_{A}+\sum u_{A}=K_{c}+\sum u_{c} \\
& m g h=\frac{1}{2} m v_{c}^{2}+m g R \\
h= & \frac{7}{2} R ;
\end{aligned}
$$

$$
m g \frac{7}{2} R=\frac{1}{2} m v_{c}^{2}+m g R
$$

$$
\frac{5}{2} g R=\frac{1}{2} v_{c}^{2}
$$

$$
v_{c}=\sqrt{5 g R}
$$

$$
v_{c}=31,6(\mathrm{~m} / \mathrm{s})
$$

$$
\begin{aligned}
& a_{r}=\frac{v_{c}^{2}}{R} \\
& a_{r}=\frac{(31,6)^{2}}{20} \\
& a_{r}=50\left(\mathrm{~m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

$$
v_{c}=\sqrt{5.10 .20}
$$

$$
\begin{aligned}
& a_{t}=9 \\
& a_{t}=9,8\left(\mathrm{~m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

10) A $15.0-\mathrm{kg}$ block is released from point A with an initial speed $10.0 \mathrm{~m} / \mathrm{s}$ as shown in Figure. The track is frictionless except for the portion between points B and spring, which has a length of 100.0 m . The block travels down the track, hits a spring of force constant $2 \mathrm{~N} / \mathrm{m}$. The coefficient of static friction and kinetic friction between the block and the surface is 0.8 and 0.2 , respectively.
a) Find the speed of the block when it reaches the point B ?
b) Determine the compression of the spring due to the block.
c) After stopped by spring, Whether the block moves again or not?

a)

There is no friction between points A and B

$$
\begin{aligned}
& E_{A}=E_{B} \\
& K_{A}+\sum u_{A}=K_{B}+\sum u_{B} \\
& \frac{1}{2} m v_{A}^{2}+m g h=\frac{1}{2} m v_{B}^{2}+0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \cdot 15 \cdot 10^{2}+15 \cdot 10 \cdot 20=\frac{1}{2} \cdot 15 \cdot V_{B}^{2} \\
& v_{B}=22,36(\mathrm{~m} / \mathrm{s}) \\
& \text { b) } \\
& \text { The work done by all non-conservative forces is equal } \\
& \text { to the systems total mechanical energy change. } \\
& W_{k s u 2}=E_{s}-E_{i} \\
& W_{f k}=\left(K_{c}+\sum u_{C}\right)-\left(K_{B}+\sum u_{B}\right) \\
& -f_{k} \cdot(s+x)=\frac{1}{2} m v_{c}^{2}+\frac{1}{2} k x^{2}-\frac{1}{2} m v_{B}^{2}-m g y \\
& -\mu_{k} \cdot n \cdot(s+x)=0+\frac{1}{2} k x^{2}-\frac{1}{2} m v_{B}^{2}-0 \\
& -0,2 \cdot 15 \cdot 10(100+x)=\frac{1}{2} 2 \cdot x^{2}-\frac{1}{2} \cdot 15 \cdot(22,36)^{2}
\end{aligned}
$$

c) In order to move again, the force exerted by the spring on the block must be greater than the static friction force.

$$
\begin{aligned}
& f_{s}=\mu_{s} \cdot n=\mu_{s} \cdot m g=0,8 \cdot 15 \cdot 10=120(\mathrm{~N}) \\
& F_{y}=k x=2 \cdot 16,2=32,4(\mathrm{~N})
\end{aligned}
$$

$F_{y}<f_{s} \quad$ The block can not move.
11) A particle is attached between two identical springs on a horizontal frictionless table. Both springs have spring constant k and are initially unstressed. If the particle is pulled a distance $\mathrm{x}=3 \mathrm{~m}$ along a direction perpendicular to the initial configuration of the springs, as in Figure;
a) What is its speed when it comes back the equilibrium point $x=0$?
b) Find its acceleration at the instant that it is released from point $\mathrm{A}(\mathrm{k}=40 \mathrm{~N} / \mathrm{m}, \mathrm{m}=8 \mathrm{~kg}$ and $\mathrm{L}=4 \mathrm{~m})$.

