Center of Mass

1) Four objects are situated along the y axis as follows: a 2.00 kg object is at +3.00 m , a $3.00-\mathrm{kg}$ object is at +2.50 m , a $2.50-\mathrm{kg}$ object is at the origin, and a $4.00-\mathrm{kg}$ object is at -0.500 m . Where is the center of mass of these objects?

The x-coordinate of the center of mass is

$$
\begin{aligned}
& x_{\mathrm{CM}}=\frac{\sum m_{i} x_{i}}{\sum m_{i}}=\frac{0+0+0+0}{(2.00 \mathrm{~kg}+3.00 \mathrm{~kg}+2.50 \mathrm{~kg}+4.00 \mathrm{~kg})} \\
& x_{\mathrm{CM}}=0
\end{aligned}
$$

and the y-coordinate of the center of mass is

$$
\begin{aligned}
& y_{\mathrm{CM}}=\frac{\sum m_{i} y_{i}}{\sum m_{i}}=\frac{(2.00 \mathrm{~kg})(3.00 \mathrm{~m})+(3.00 \mathrm{~kg})(2.50 \mathrm{~m})+(2.50 \mathrm{~kg})(0)+(4.00 \mathrm{~kg})(-0.500 \mathrm{~m})}{2.00 \mathrm{~kg}+3.00 \mathrm{~kg}+2.50 \mathrm{~kg}+4.00 \mathrm{~kg}} \\
& y_{\mathrm{CM}}=1.00 \mathrm{~m}
\end{aligned}
$$

2) A water molecule consists of an oxygen atom with two hydrogen atoms bound to it. The angle between the two bonds is 106°. If the bonds are 0.100 nm long, where is the center of mass of the molecule?

3) A uniform piece of sheet steel is shaped as in Figure. Compute the x and y coordinates of the center of mass of the piece.

Let A_{1} represent the area of the bottom row of squares, A_{2} the middle square, and A_{3} the top pair.
$A=A_{1}+A_{2}+A_{3}$
$M=M_{1}+M_{2}+M_{3}$
$\frac{M_{1}}{A_{1}}=\frac{M}{A}$
$A_{1}=300 \mathrm{~cm}^{2}, A_{2}=100 \mathrm{~cm}^{2}, A_{3}=200 \mathrm{~cm}^{2}, A=600 \mathrm{~cm}^{2}$
$M_{1}=M\left(\frac{A_{1}}{A}\right)=\frac{300 \mathrm{~cm}^{2}}{600 \mathrm{~cm}^{2}} M=\frac{M}{2}$

$M_{2}=M\left(\frac{A_{2}}{A}\right)=\frac{100 \mathrm{~cm}^{2}}{600 \mathrm{~cm}^{2}} M=\frac{M}{6}$
$M_{3}=M\left(\frac{A_{3}}{A}\right)=\frac{200 \mathrm{~cm}^{2}}{600 \mathrm{~cm}^{2}} M=\frac{M}{3}$
$x_{\mathrm{CM}}=\frac{x_{1} M_{1}+x_{2} M_{2}+x_{3} M_{3}}{M}=\frac{15.0 \mathrm{~cm}\left(\frac{1}{2} M\right)+5.00 \mathrm{~cm}\left(\frac{1}{6} M\right)+10.0 \mathrm{~cm}\left(\frac{1}{3} M\right)}{M}$
$x_{\mathrm{CM}}=11.7 \mathrm{~cm}$
$y_{\mathrm{CM}}=\frac{\frac{1}{2} M(5.00 \mathrm{~cm})+\frac{1}{6} M(15.0 \mathrm{~cm})+\left(\frac{1}{3} M\right)(25.0 \mathrm{~cm})}{M}=13.3 \mathrm{~cm}$
$y_{\mathrm{CM}}=13.3 \mathrm{~cm}$
4) A rod of length 30.0 cm has linear density (mass-perlength) given by

$$
\lambda=50.0 \mathrm{~g} / \mathrm{m}+20.0 \times \mathrm{g} / \mathrm{m}^{2}
$$

where x is the distance from one end, measured in meters.
(a) What is the mass of the rod? (b) How far from the $x=0$ end is its center of mass?
a) $M=\int d m=\int_{0,3}^{0,3} \lambda d x=\int_{0}^{0,3}[50+20 x] d x$

$$
M=\left[50 x+20 \frac{x^{2}}{2}\right]_{0}^{0,3}=15,9 g
$$

b)

$$
\begin{aligned}
& x_{k m}=\frac{1}{M} \int_{0,3} x d m=\frac{1}{M} \int_{0}^{0,3} x(\lambda d x)_{0}^{0,3} \\
& x_{k m}=\frac{1}{M} x(50+20 x) d x=\frac{1}{M} \int_{0}^{0}\left(50 x+20 x^{2}\right) d x \\
& x_{k m}=\frac{1}{15,9}\left[50 \frac{x^{2}}{2}+20 \frac{x^{3}}{3}\right]_{0}^{0,3}=0,153 \mathrm{~m}
\end{aligned}
$$

