2014/2 ENGINEERING DEPARTMENTS PHYSICS 2

RECITATION 2

(Gauss's Law)

1. Consider an electric field in the constant direction is perpendicular to plane of a circle with radius \mathbf{R}. The magnitude of electric field at a distance r from the center of the circle is $E_{0}\left[1-\frac{r}{R}\right]$. Determine the electric flux through the circle.

$$
\begin{aligned}
d \phi & =\vec{E} \cdot d \vec{A}=E d A=E_{0}\left(1-\frac{r}{R}\right) 2 \pi r d r \\
\Phi & =\int E d A=\int E_{0}\left(1-\frac{r}{R}\right) 2 \pi r d r \\
\Phi & =E_{0} 2 \pi \int\left(1-\frac{r}{R}\right) r d r
\end{aligned}
$$

$$
\left.\Phi=E_{0} 2 \pi\left(\frac{r^{2}}{2}-\frac{r^{3}}{3 R}\right) \right\rvert\,
$$

$$
\Phi=\pi E_{0} \frac{R^{2}}{3}
$$

2. Consider a closed triangular box resting within a horizontal electric field of magnitude $E=7.80 \times 10^{4}(N / C)$ as shown in Figure 1. Calculate the electric flux through
a) the vertical rectangular surface,
b) the slanted surface,
c) the entire surface of the box.

Figure 1

a) $\Phi_{1}=E A_{1} \cos \theta_{1}=7,8 \cdot 10^{4}(0,1 \cdot 0,3) \cos 180^{\circ}=-2,34 \mathrm{Nm}^{2} / \mathrm{C}$
b)

$$
\begin{aligned}
& \Phi_{1}=E A_{2} \cos 60^{\circ}=7,8 \cdot 10^{4}(0,2 \cdot 0,3) \cos 60^{\circ} \\
& \Phi_{2}=2,34 \mathrm{Nm}^{2} / \mathrm{C}
\end{aligned}
$$

c) The flux through the base (5) the front 3 and the back 4 surface of the box is zero. Because, the electric field vector is perpendicular to the surface.

$$
\begin{aligned}
& \Phi_{\text {net }}=\Phi_{1}+\Phi_{2}+\Phi_{3}+{\Phi_{4}}+\Phi_{5} \\
& \underline{\Phi}_{\text {net }}=-2,34+2,34=0 \mathrm{Nm}^{2} / \mathrm{C}
\end{aligned}
$$

3. A closed surface with dimensions $\mathbf{a}=\mathbf{0 . 2} \mathbf{m}, \mathbf{b}=\mathbf{0 . 3} \mathbf{~ m}$ and $\mathbf{c = 0 . 3} \mathbf{m}$ is located as in Figure 2. The left edge of the closed surface is located at position $\mathbf{x}=\mathbf{a}$. The electric field throughout the region is nonuniform and given by $E=\left(1+x^{2}\right) N / C$ where \mathbf{x} is in meters.
a) Calculate the net electric flux leaving the closed surface.
b) What net charge is enclosed by the surface?

Figure 2

2) $\Phi_{E}=\oint \vec{E} \cdot d \vec{A}$

$$
\begin{aligned}
& \Phi_{6}=\Phi_{1}+\Phi_{2}+\Phi_{3}+\Phi_{4}+\Phi_{5}+\Phi_{6} \\
& \Phi_{3}=\int_{3} \vec{E} \cdot d \vec{A}=\int_{3} E d A \cos 90^{\circ}=0
\end{aligned}
$$

Same way,

$$
\Phi_{4}=\Phi_{5}=\Phi_{6}=
$$

$$
\Phi_{E}=\Phi_{1}+\Phi_{2}
$$

$$
\vec{E}_{1}-\left.\left(1+x^{2}\right) \hat{i}\right|_{x=a}=\left(1+a^{2}\right) \hat{i} \quad(N / C)
$$

$$
\vec{E}_{2}=\left.\left(1+x^{2}\right) \hat{\imath}\right|_{x=a+c}=\left[1+(a+c)^{2}\right] \hat{\imath} \quad(N / C)
$$

$$
\Phi_{E}=\int_{1} \vec{E}_{1} \cdot d \vec{A}_{1}+\int_{2} \vec{E}_{2} \cdot d \vec{A}_{2}
$$

$$
\underline{\Phi}_{E}=\int_{1}\left(1+a^{2}\right) \hat{\imath} \cdot d A_{1}(-\hat{\imath})+\int_{2}\left[1+(a+c)^{2}\right] \hat{\imath} \cdot d A_{2} \hat{\imath}
$$

$$
\begin{aligned}
& \Phi_{E}=-\left(1+a^{2}\right) \int_{1} d A_{1}+\left[1+(a+c)^{2}\right] \int_{2} d A_{2} \\
& \Phi_{E}=-\left(1+a^{2}\right) a b+\left[1+(a+c)^{2}\right] a b \\
& \Phi_{E}=-a b-a^{3} b+a b+a^{3} b+2 a^{3} b c+a b c=a b c(2 a+c) \\
& \left.\begin{array}{l}
a=0,2 \mathrm{~m} \\
b
\end{array}\right\} \begin{array}{l}
\left.\begin{array}{l}
a, 3 \mathrm{~m} \\
c
\end{array}\right\} \quad \Phi_{\bar{E}}=12,6 \mathrm{~m} \cdot 10^{-3} \mathrm{Nm}^{2} / \mathrm{C}
\end{array}
\end{aligned}
$$

b)

$$
\begin{gathered}
\Phi_{E}=\frac{q_{\text {net }}}{\epsilon_{0}} \Rightarrow q_{\text {net }}=\epsilon_{0} \Phi_{E} \\
q_{\text {net }}=8,85 \cdot 10^{-12} \cdot 12,6 \cdot 10^{-3} \\
q_{\text {net }}=1,12 \cdot 10^{-13} \mathrm{C}
\end{gathered} \quad \epsilon_{0}=8,85 \cdot 10^{-12} \mathrm{c}^{2} / \mathrm{Nm}^{2}
$$

4. Three infinite, nonconducting sheets of charge are parallel to each other, as shown in

Figure 3. The sheets have a uniform surface charge density $\sigma_{1}=+5\left(\mu \mathrm{C} / \mathrm{m}^{2}\right), \sigma_{2}=-10\left(\mu \mathrm{C} / \mathrm{m}^{2}\right)$ and $\sigma_{3}=+15\left(\mu C / m^{2}\right)$, respectively.

Calculate the electric field at
a) I zone,
b) Il zone,
c) III zone,
d) IV zone.

Figure 3

$$
\begin{array}{lll}
E_{1}=\frac{\sigma_{1}}{2 \epsilon_{0}} & E_{2}=\frac{\sigma_{2}}{2 \epsilon_{0}} & E_{1}=\frac{\sigma_{1}}{2 \epsilon_{0}} \\
E_{1}=\frac{5 \cdot 10^{-6}}{2 \cdot 8,85 \cdot 10^{-11}} & E_{2}=\frac{10 \cdot 10^{-6}}{2.8,85 \cdot 10^{-1 t}} & E_{2}=\frac{15 \cdot 10^{-6}}{2 \cdot 8,85 \cdot 10^{-12}} \\
E_{1}=2,82 \cdot 10^{5}(\mathrm{n} / \mathrm{c}) & E_{2}=5,65 \cdot 10^{5}(0 / \mathrm{c}) & E_{3}=8,47 \cdot 10^{5}(\mathrm{nk})
\end{array}
$$

$$
\overrightarrow{\mathbf{E}}
$$

$$
\Phi_{E}=\oint \vec{E} \cdot d \vec{A}=\frac{q_{i}}{\epsilon_{0}}
$$

$$
\Phi_{E}=2 E A=\frac{q_{i c}}{\epsilon_{0}}=\frac{\sigma A}{\epsilon_{0}}
$$

$$
E=\frac{\sigma}{2 \epsilon_{0}}
$$

I zone: $\vec{E}_{I}=E_{1}(-\hat{i})+E_{2}(\hat{i})+E_{3}(-\hat{\imath})$

$$
\vec{E}_{I}=(-2,82+5,65-8,47) \cdot 10^{5} \hat{i}
$$

$$
\vec{E}_{I}=5,64 \cdot 10^{5}(-i)(\mathrm{N} / \mathrm{C})
$$

II zone; $\quad \vec{E}_{\text {II }}=E_{1}(\hat{i})+E_{2}(\hat{i})+E_{3}(-\hat{i})$

$$
\begin{aligned}
& \vec{E}_{\text {II }}=(2,82+5,65-8,47) \cdot 10^{5} \hat{i} \\
& \vec{E}_{\text {II }}=0
\end{aligned}
$$

III zone ;

$$
\begin{aligned}
& \vec{E}_{\text {III }}=E_{1}(\hat{i})+E_{2}(-\hat{i})+E_{3}(-\hat{i}) \\
& \vec{E}_{\text {III }}=(2,82-5,65-8,47) \cdot 10^{5} \hat{i} \\
& \vec{E}_{\text {III }}=11,30 \cdot 10^{5}(-\hat{i})(\mathrm{N} / \mathrm{c})
\end{aligned}
$$

IV zone ;

$$
\begin{aligned}
& \vec{E}_{\text {II }}=E_{1}(\hat{i})+E_{2}(-\hat{i})+E_{3}(\hat{i}) \\
& \vec{E}_{\text {IV }}=(2,82-5,65+8,47) \cdot 10^{5} \hat{i} \\
& \vec{E}_{\text {IV }}=5,64 \cdot 10^{5}(\hat{i})(N \mid C)
\end{aligned}
$$

5. A long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of the wire as in Figure 4. The wire has a charge per unit length of $\boldsymbol{+} \boldsymbol{\lambda}$, and the cylinder has a net charge per unit length of $\mathbf{+ 2 \boldsymbol { \lambda }}$. From this information, use Gauss's law to find the electric field in the regions
a) $r<a$,
b) $a<r<b$,
c) $r>b$.
d) Determine the charge distribution of the cylindrical sheet.

Figure 4

$$
\Phi_{E}=\oint \overrightarrow{E_{E}} \cdot d \vec{A}=\frac{q_{i}}{\epsilon_{0}}
$$

> a)

$$
q_{i}=\lambda L
$$

$$
E(2 \pi r L)=\frac{\lambda L}{\epsilon_{0}}
$$

$$
E=\frac{1}{2 \pi \epsilon_{0}} \frac{\lambda}{r}
$$

b)

$$
E=0 \quad a<r<b
$$

$$
E=2 k \frac{\lambda}{r} \quad r<a
$$

c) $E(2 \pi r L)=\frac{\lambda L+2 \lambda L}{\epsilon_{0}}$

$$
\begin{aligned}
& E=\frac{1}{2 \pi \epsilon_{0}} \frac{3 \lambda}{r} \\
& E=6 k \frac{\lambda}{r} \quad r>b
\end{aligned}
$$

d)

$$
q_{i}=-\lambda L
$$

Because, wire induces the inner surface of the cylinder

$$
\begin{gathered}
q_{\text {cylinder }}=q_{i}+q_{\text {out }} \\
\lambda_{\text {cylinder }} L=-\lambda L+q_{\text {out }} \\
2 \lambda L+\lambda L=9_{\text {out }} \\
9_{\text {out }}=3 \lambda L
\end{gathered}
$$

6. There is a +2 Q point charge at the centre of an empty insulating sphere which carriers $+Q$ total charge and has charge density, ρ.
a) Find the electric fields for $R<r<2 R$ and $r>2 R$ regions in terms of k, Q, r, and R .
b) If the sphere is conductor, calculate the electric fields for $R<r<2 R$ and $r>2 R$ regions.

Figure 5
a) $\quad \Phi_{\epsilon}=\oint \vec{E} \cdot d \vec{A}=\frac{q_{\text {is }}}{\epsilon_{0}}$

$$
\begin{aligned}
& \text { for } R<r<2 R \text { zone (1) } \\
& E\left(4 \pi r^{2}\right)=\frac{q_{i_{4}}}{\epsilon_{0}}=\frac{2 Q+q_{\text {rue }}}{\epsilon_{0}} \\
& E\left(4 \pi r^{2}\right)=\left[2 Q+\frac{Q}{7 R^{3}}\left(r^{3}-R^{3}\right)\right] \cdot \frac{1}{\epsilon_{0}}
\end{aligned}
$$

$$
E=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{1}{r^{2}}\left[2 Q+\frac{Q}{7 R^{2}}\left(r^{3}-R^{3}\right)\right]
$$

$$
E=k\left(\frac{2 Q}{r^{2}}+\frac{Q r}{7 R^{2}}-\frac{Q}{7 r^{2}}\right)
$$

$$
E=\frac{k Q}{7}\left(\frac{13}{r^{2}}+\frac{r}{R^{3}}\right)
$$

$$
\text { for } r>2 R \quad \text { zone (2) }
$$

$$
E\left(4 \pi r^{2}\right)=\frac{2 Q+Q}{\epsilon_{0}}
$$

$$
q_{\text {sphere }}=\frac{\frac{4}{3} \pi\left(r^{3}-R^{3}\right) \cdot Q}{\frac{4}{3} \pi\left(7 R^{3}\right)}
$$

$$
q_{\text {sphere }}=\frac{Q}{7 R^{3}}\left(r^{3}-R^{3}\right)
$$

volume of $\frac{4}{3} \pi\left[(2 R)^{3}-R^{3}\right] \begin{aligned} & \text { of spherical shell } \\ & \text { has } Q_{\text {charga }}\end{aligned}$ " $\frac{4}{3} \pi\left[r^{3}-R^{3}\right]$ sphere

$$
E=\frac{1}{4 \pi \epsilon_{0}} \frac{3 Q}{r^{2}}, \quad E=3 k \frac{Q}{r^{2}}
$$

b) for $R<r<2 R \quad$ zone (1)

$$
\begin{array}{ll}
\text { inside conductor } E=0 ; & 9 \text { in }=\left(9 \text { in } \text { surface }^{2 Q}\right. \\
& 9=-2 Q+2 Q=0 \\
E\left(4 \pi r^{2}\right)=\frac{9 \text { in }}{\epsilon_{0}}=0 & \\
E=0
\end{array}
$$

for $r>2 R$ zone (2)
$E\left(4 \pi r^{2}\right)=\frac{2 Q+Q}{\epsilon_{0}}$
$E=3 k \frac{Q}{r^{2}}$
7. A solid, insulating sphere of radius \mathbf{R} has a nonuniform charge density $\rho=\alpha r$ and a total charge $+\mathbf{2 Q}$ (α positive constant and r radial distance from origin). Concentric with this sphere is a charged (+4 Q), conducting shell sphere whose inner and outer radii are $\mathbf{2 R}$ and $\mathbf{3 R}$, as shown in

Figure 5.
a) Find α constant in terms of Q and R.

Find the magnitude of the electric field in the regions in terms of k, Q, r and R.
b) $r<R$
c) $R<r<2 R$
d) $2 R<r<3 R$
e) $r>3 R$

Figure 6
a)

$$
\begin{aligned}
d Q & =\rho d V \\
\int_{0}^{2 Q} d Q & =\int_{0}^{R}(\alpha r) 4 \pi r^{2} d r \\
Q]_{0}^{20} & =4 \pi \alpha\left[\frac{r^{4}}{4}\right]_{0}^{R} \pi r^{3} \\
2 Q & =\pi \alpha R^{4} \\
\alpha & =\frac{2 Q}{\pi R^{4}}
\end{aligned}
$$

b) $\Phi_{E}=\oint \vec{E} \cdot d \vec{A}=\frac{q_{B}}{\epsilon_{0}} \quad q_{i}=\int \rho d V$

$$
\begin{aligned}
& E\left(4 \pi r^{2}\right)=\frac{1}{\epsilon_{0}} \int_{0}^{r}(\alpha r) 4 \pi r^{2} d r \\
& E\left(4 \pi r^{2}\right)=\frac{1}{\epsilon_{0}} 4 \pi \ddot{\alpha}:\left[\frac{r^{4}}{4}\right]_{0}^{r}
\end{aligned}
$$

$$
E=\frac{1}{4 \pi \epsilon_{0}} \frac{4 \pi}{r^{2}} \frac{2 Q}{\pi R^{4}} \frac{r^{4}}{4}, \quad E=2 k \frac{Q r^{2}}{R^{4}}
$$

c)

$$
\begin{aligned}
& E\left(4 \pi r^{2}\right)=\frac{2 Q}{\epsilon_{0}} \\
& E=\frac{1}{4 \pi \epsilon_{0}} \frac{2 Q}{r^{2}}, \quad E=2 k \frac{Q}{r^{2}} \quad R<r<2 R
\end{aligned}
$$

d)

$$
\begin{gathered}
E\left(4 \pi r^{2}\right)=\frac{2 Q-2 Q}{\epsilon_{0}} \quad q_{i}=2 Q+\left(q_{i}\right)_{\text {surface }} \\
E=0 \quad 2 R<e<3 R
\end{gathered}
$$

e)

$$
\begin{aligned}
& E\left(4 \pi r^{2}\right)=\frac{4 Q+2 Q}{\epsilon_{0}} \\
& E=6 k \frac{Q}{r^{2}} \quad r>3 R
\end{aligned}
$$

8. A point charge q locates at the centre of a cylinder with radius a and height 2 h (see Figure 7). Show that the electric flux through the lateral surface of the cylinder is given by $\frac{\sqrt{2}}{2} \frac{q}{\varepsilon_{0}}$.

Figure 7

$$
\begin{array}{r}
\Phi_{E}=\oint \vec{E} \cdot d \vec{A} \quad \vec{E}=k \frac{q}{r^{2}} \hat{r} \\
\Phi_{E}=\oint E \cdot d A \cdot \cos \theta \\
d A=2 \pi a d y \\
\cos \theta=\frac{a}{r} \Rightarrow r=\frac{a}{\cos \theta} \\
\operatorname{tg} \theta=\frac{y}{a} \Rightarrow y=a \cdot \operatorname{tg} \theta
\end{array}
$$

$$
d y=a \sec ^{2} \theta d \theta
$$

$$
\Phi_{E}=\int k \frac{q}{r^{2}} d A \cos \theta=\int k \frac{q}{r^{2}} 2 \pi a d y \frac{a}{r}
$$

$$
\Phi_{E}=2 \pi a^{2} k q \int_{-a}^{a} \frac{d y}{r^{3}}=2 \pi a^{2} k q \int_{-a}^{a} \frac{d y}{\left(\frac{a}{\cos \theta}\right)^{3}}
$$

$$
\begin{aligned}
& \left.\Phi_{E}=2 \pi a^{2} k q \int \frac{\cos ^{3} \theta a \sec ^{2} \theta d \theta}{a^{2}} \quad \right\rvert\, \sec \theta=\frac{1}{\cos \theta} \\
& \Phi_{E}=2 \pi k g \int_{-\pi / 4}^{\pi / 4} \cos \theta d \theta \\
& \left.\Phi_{E}=2 \pi k q \sin \theta\right]_{-\pi / 4}^{\pi / 4} \\
& \Phi_{E}=2 \pi k q\left[\sin \frac{\pi}{4}-\sin \left(-\frac{\pi}{4}\right)\right] \\
& \Phi_{E}=2 \pi k q\left[\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{2}}{2}\right)\right] \\
& \Phi_{E}=2 \pi k q \sqrt{2} \\
& \Phi_{E}=2 \pi \frac{1}{4 \pi \epsilon_{0}} q \sqrt{2} \\
& \Phi_{E}=\frac{\sqrt{2}}{2} \frac{9}{\epsilon_{0}}
\end{aligned}
$$

