## RECITATION 1

1) Check that following equations are dimensionally correct.
(In equations, $x$ is the distance, $v$ is the velocity, $t$ is the time, $a$ is the acceleration)
a) $x_{s}=x_{i}+v_{x i} t+\frac{1}{2} a t^{2}$
b) $v_{x s}^{2}=v_{x i}^{2}-2 a\left(x_{s}-x_{i}\right)$
2) The period $T$ of a simple pendulum is measured in time units and is $T=2 \pi \sqrt{\frac{l}{g}}$ where $l$ is the length of the pendulum and $g$ is the acceleration of gravity. Find the dimension and SI unit of the period $T$.
3) Newton's law of universal gravitation is represented by $F=G \frac{M m}{r^{2}}$. Here $F$ is the magnitude of the gravitational force exerted by one object on another, $M$ and $m$ are the masses of the objects, and $r$ is a distance. Use dimensional analysis to determine the SI units of the constant $G$.
4) The position of a particle moving under uniform acceleration is some function of time and the acceleration. Suppose we write this position $s=k a^{m} t^{n}$, where $k$ is a dimensionless constant. Find the numerical values of the constants $m$ and $n$ by dimensional analysis.
5) Vectors $\vec{A}, \vec{B}$ ve $\vec{C}$ are defined as $A_{x}=3, A_{y}=-2, A_{z}=2 ; B_{x}=0, B_{y}=0, B_{z}=4 ; C_{x}=2, C_{y}=-3$, $C_{z}=0$. Find the following calculations:
a) $\vec{A} \cdot(\vec{B}+\vec{C})$
b) $\vec{A} \times(\vec{B}+\vec{C})$
c) $\vec{A} \cdot(\vec{B} \times \vec{C})$
d) $\vec{A} \times(\vec{B} \times \vec{C})$
6) Two vectors are given by $\vec{A}=2 \hat{i}+3 \hat{j}+\sqrt{3} \hat{k}$ and $\vec{B}=2 \hat{i}-3 \hat{j}-\sqrt{3} \hat{k}$.
a) Find the $\cos \theta$ value of the angle between $\vec{A}$ and $\vec{B}$ vectors,
b) Find the unit vector which is normal to both $\vec{A}$ and $\vec{B}$ vectors.
7) A person going for a walk follows the path shown in Figure 1. The total trip consists of four straight-line paths. At the end of the walk, what is the person's resultant displacement measured from the starting point?

