RECITATION 1

1) Check that following equations are dimensionally correct.

(In equations, x is the distance, v is the velocity, t is the time, a is the acceleration)

a)
$$x_s = x_i + v_{xi}t + \frac{1}{2}at^2$$

b) $v_{xs}^2 = v_{xi}^2 - 2a(x_s - x_i)$

2) The period *T* of a simple pendulum is measured in time units and is $T = 2\pi \sqrt{\frac{l}{g}}$ where *l* is the length of the pendulum and *g* is the acceleration of gravity. Find the dimension and SI unit of the period *T*.

3) Newton's law of universal gravitation is represented by $F = G \frac{Mm}{r^2}$. Here *F* is the magnitude of the gravitational force exerted by one object on another, *M* and *m* are the masses of the objects, and *r* is a distance. Use dimensional analysis to determine the SI units of the constant *G*.

4) The position of a particle moving under uniform acceleration is some function of time and the acceleration. Suppose we write this position $s = ka^m t^n$, where k is a dimensionless constant. Find the numerical values of the constants m and n by dimensional analysis.

5) Vectors \vec{A} , \vec{B} ve \vec{C} are defined as $A_x = 3$, $A_y = -2$, $A_z = 2$; $B_x = 0$, $B_y = 0$, $B_z = 4$; $C_x = 2$, $C_y = -3$, $C_z = 0$. Find the following calculations:

a) $\vec{A} \cdot (\vec{B} + \vec{C})$ b) $\vec{A} \times (\vec{B} + \vec{C})$ c) $\vec{A} \cdot (\vec{B} \times \vec{C})$ d) $\vec{A} \times (\vec{B} \times \vec{C})$

- 6) Two vectors are given by $\vec{A} = 2\hat{i} + 3\hat{j} + \sqrt{3}\hat{k}$ and $\vec{B} = 2\hat{i} 3\hat{j} \sqrt{3}\hat{k}$.
 - **a**) Find the $\cos\theta$ value of the angle between \vec{A} and \vec{B} vectors,
 - **b**) Find the unit vector which is normal to both \vec{A} and \vec{B} vectors.

7) A person going for a walk follows the path shown in Figure 1. The total trip consists of four straight-line paths. At the end of the walk, what is the person's resultant displacement measured from the starting point?

