RECITATION 2

1) The radius r of a circle inscribed in any triangle whose sides are a, b, and c is given by $r = \left[(s-a)(s-b)(s-c)/s \right]^{1/2}$, where s is an abbreviation for (a+b+c)/2. Check this formula for dimensional consistency.

2) Check which of the following equations are dimensionally correct:

- **a**) $\frac{mv^2}{2} = Ft$ (where *m* is the mass, *v* is the velocity, *F* is the force and *t* is the time)
- **b**) $\frac{mv^2}{2} = Fd$ (where *m* is the mass, *v* is the velocity, *F* is the force and *d* is the displacement)

3) A force *F* acting on a body of mass *m* a distance *r* from some origin has magnitude $F = \frac{Ame^{-\alpha r}}{r^3}$, where *A* and α are both constants. The constant e = 2,718.... What are the dimensions of the constants *A* and α ? And determine the units of the constants *A* and α in SI system.

A particle *P* travels with constant speed v on a circle of radius *R*. The particle passes through *O* at time t = 0 in counterclockwise direction and has a period *T*.

a) With respect to *O*, find the particle's position vector at time $t = \frac{3T}{4}$. Give your result in terms of unit vectors.

b) Calculate the scalar product $\vec{\upsilon} \cdot \vec{r}$ where $\vec{\upsilon}$ and \vec{r} are, respectively, the velocity and position vectors of the particle at time $t = \frac{3T}{4}$.

c) Calculate the vector product $\vec{a} \times \vec{r}$ where \vec{a} and \vec{r} are, respectively, the acceleration and position vectors of the particle at time $t = \frac{3T}{4}$. Give your result in terms of unit vectors.

- **d**) Where is the particle if $\vec{r} \cdot \vec{\upsilon} = 0$?
- e) Where is the particle if $\vec{a} \times \vec{r} = 0$?

5) Three vectors are oriented as shown in figure, where $|\vec{A}| = 20 \text{ m}$,

 $\left|\vec{B}\right| = 40 \text{ m} \text{ and } \left|\vec{C}\right| = 30 \text{ m}.$ Find;

- a) The *x* and *y* components of the resultant vector,
- b) The magnitude and direction of the resultant vector.

6) A car travels 20 km east, then 10 km north, and then 40 km northeast (30° east of north). Draw a vector diagram and write the displacement vector from the starting point. Find the magnitude and direction of the displacement vector.